Subject: Mass Transfer -1 Subject code: 18CH52 Total marks: 100

Note :

	Answer any five full questions, choosing one full question from each module. Use of humidity chart permitted.	
	Module 1	
1 a	Water level in a 1m diameter well in a desert is 12m deep from surface .The	10
	stagnant air and water in well are at a pressure of 750 mmHg and 30 ^o C.A gentle	
	breeze of air is blowing across top of well. Calculate loss of water in kg/hr due to	
	steady state diffusion from surface of water.	
	$D_{AB}= 2.6*10^{-5} \text{ m}^2/\text{s}$ and Vapor pr= 0.045 atm	
b	Appling basic flux equation, derive an expression for steady state counter current	10
-	diffusion of a gaseous component. State the assumptions.	-
	OR	
2	Define stage and cascades. Develop material balance equation for steady state	20
	counter current cascades. Explain the graphical procedure for determining	
	number of stages required for counter current cascades.	
	Module 2	
3 a	Define the following : i) Constant rate (ii) Falling rate period (iii) Free moisture	10
	content (iv) Absolute humidity (v) % Humidity	
b	A mixture of acetone vapor and nitrogen gas at 101.3 kpa and 310 K contains	10
	acetone vapor to the extent that it exerts a partial pressure of 15kpa. The vapour	
	pressure of acetone is 26.36 kpa. Determine the following. (i) Mole fr (ii)	
	Wt.fraction (iii) molal humidity (iv) saturation humidity	
	OR	
4	With a neat sketch explain different types of cooling tower.	20
5 a	A 100kg of solids containing 30% moisture is to be dried in a tray dryer to 16%	12
	moisture by passing a current of air at 350 K across its surface at a velocity of 1.8	
	m/s. If the constant rate of drying under these conditions is $0.7 \times 10^{-3} \text{ kg/(m^2s)}$	
	and the critical moisture content is 15%, calculate the drying time. Drying	
1	surface = $0.03 \text{ m}^2/\text{kg}$ dry wt.	
b	Derive the equation to determine total time required for drying.	08
6	Module 3	20
6	With a neat sketch explain any two type of drying equipment OR	20
7.0		00
7 a b	Compare physical and chemical adsorption.With a neat sketch explain fixed bed adsorber.	08 12
U	Module 4	12
8	An aqueous solution containing valuable solute is colored by small amounts of an	20
0	impurity. It is to be decolorized by adsorption of an impurity on adsoptive	20
	carbon. The equilibrium data obtained by stirring various amounts of adsorbents	
	with original solution at constant temperature are as follows.	

	Kg carbon 0 0.001 0.004 0.008 0.02 0.04	
	/Kg solution	
	Eq.Color 9.6 8.6 6.3 4.3 1.7 0.7	
	The original solution has a color concentration of 9.6 measured on an arbitrary	
	scale and it is desired to reduce the color concentration to 10 % of its original	
	value. Calculate the quantity of fresh carbon required if 1000kg of solution is	
	used for single stage operation.	
	Module 5	
9	With a neat sketch explain any two types of crystallizer.	20
	OR	
10	Write short notes on the following	20
	i) Reverse osmosis	
	ii) Ultra filtration	
	iii) Ion Exchange	
	iv) Dialysis	