MODEL QUESTION PAPER -I

USN								
		Fifth semester BE Degree Examination Dec. 2020 / Jan. 2021						
ті	no • 1	CHEMICAL REACTION ENGINEERING –I Rev. mark	ka•100					
1 11	ne	nouis max.man	XS.100					
		MODULE 1						
Q 1.	a.	Differentiate the following (i) molecularity and order of reaction (ii) Elementary	09					
		and non-elementary reactions (iii) single and multiple reactions						
Q 1.	b.	Derive the temperature dependent term given by collision theory						
Q 1.	c.	Milk is pasteurized if it is heated to 63°C for 30 min, but if it is heated to	05					
		74°C it only needs 15 s for the same result. Find the activation energy of this						
		sterilization process.						
Q 2.	a.	Explain about Kinetic Models for Nonelementary Reactions	08					
		Experiment shows that the homogeneous decomposition of ozone proceeds	12					
		with a rate						
		$-r_{O3=} K [O_3]^2 [O_2]^{-1}$						
		(i) What is the overall order of reaction?						
		(ii) Suggest a two-step mechanism to explain this rate and state how you						
		would further test this mechanism.						
		MODULE 2						
Q 3.	a.	What are constant volume batch reactions? Explain the total pressure data useful	12					
		in constant density system						
	b.	Derive equation for second order bimolecular reaction for (M # 1)	10					
Q 4.	a.	What is variable volume reaction? Explain and derive equation for first order	10					
		reaction						
	b.	Find the first-order rate constant for the disappearance of A in the gas	10					
		reaction 2A + R if, on holding the pressure constant, the volume of the						
		reaction mixture, starting with 80% A, decreases by 20% in 3 min.						
		MODULE 3						
Q 5.	a.	Derive performance equation for batch reactor	10					
	b.	Explain the advantages, disadvantages and application of Batch, Mixed flow and	10					

plug flow reactor

Q. 6. We are planning to operate a batch reactor to convert A into R. This is a liquid 20 reaction, the stoichiometry is A+R, and the rate of reaction is given in Table. How long must we react each batch for the concentration to drop from $C_{Ao} = 1.3$ mol/liter to $C_{Af} = 0.3$ mol/liter?

C _A	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	1.0	1.3	2.0
-r _A	0.1	0.3	0.5	0.6	0.5	0.25	0.10	0.06	0.05	0.045	0.042
Module 4											

- Q. 7. A first order irreversible reaction $A \rightarrow R$ is carried out in a PFR followed by mixed 20 flow reactor in series. The concentration of A in the feed is 1 kmol/m3 and residence time for the reactor is 3600 sec. the specific rate constsnt for the reactor is 1/3600 sec-1. Find the conversion of A at the exit of the system.
- Q. 8. a. Explain the graphical procedure for calculating exit concentration from the 10 reactor
 - b. Discuss the qualitative treatment about the product distribution of decomposition of A, for reaction of type

 $A \rightarrow R$ desired product, rate constant K_1

 $A \rightarrow S$ undesired product, rate constant K_2

- Q.9. a. What is adiabetic operation? Explain material balance and conversion for 10 adiabetic operation
 - b. Explain the effeect of temperature on reversible and irreversible rection 10
- Q. 10. a.Discuss about optimum temperature progression10
 - b. Write a stepwise procedure for an adiabetic batch operation 10

MODEL QUESTION PAPER – II

USN 2 K L 1 8 C H 0 0 0

18CH53

Fifth semester BE Degree Examination Dec. 2020 / Jan. 2021 CHEMICAL REACTION ENGINEERING –I

Tir	ne : 3	hours Max.mar	ks:100			
		MODULE 1				
Q 1.	a.	How do you classify chemical reactions Explain	08			
	b.	Define the following (i) rate (ii) mechanism (iii) order (iv) molecularity of chemical				
		reaction				
	C.	The pyrolysis of ethane proceeds with an activation energy of about 300	05			
		kJ/mol. How much faster is the decomposition at 650°C than at 500 °C?				
Q 2.	a.	Explain the temperature dependency term given by transition state theory	10			
		explain the testing of Kinetic Models of non elementary reactions	10			
		MODULE 2				
Q 3.	a.	Explain integral and differential method of analysing kinetica data	08			
	b.	The reaction $A+B\rightarrow C$ is believed to be first order with respect to each reactant.	12			
		The following data are reported from batch reactor at 20oC, using an initial				
		concentration of B = 0.123 Kmol/ m^3 , determine whether these data are				
		consistent with given rate equation. If so find rate constant.				
Q 4.	a.	Derive equation for first order reversible reaction A=R, with rate constant of	10			
		forward reaction is k_1 and reverse reaction is k_2				
	b.	Write a note on variable volume reaction	04			
	с.	Derive equation for variable volume reaction for second order reaction	06			
		MODULE 3				
Q. 5.	a.	Derive performance equation for plug flow reactor	08			
	b.	Define space time and space velocity with example	04			
	с.	Explain the advantages and disadvantages of batch reactor	06			
Q. 6.		A high molecular weight hydrocarbon gas A is fed continuously to a heated high	20			
		temperature mixed flow reactor where it thermally cracks (homogeneous gas				
		reaction) into lower molecular weight materials, collectively called R, by a				
		stoichiometry approximated by A \rightarrow 5R.				
		By changing the feed rate different extents of cracking are obtained as follows:				
		$E_{\rm millimol/hr} = 300 \pm 1000 \pm 3000 \pm 5000$				

F _{A0} , millimol/hr	300	1000	3000	5000
CA,out, millimol/liter	16	30	50	60

The internal void volume of the reactor is V = 0.1 liter, and at the temperature of the reactor the feed concentration is CAo = 100 millimol/liter. Find a rate equation to represent the cracking reaction.

Module 4

- Q. 7. a. For first order reaction, prove that the system of n equal sized mixed flow reactor 10 connected in series tends to behave as a plug flow reactor as $n \rightarrow \infty$
 - b. An irreversible homogeneous liquid phase reaction A →B+C is carried in two 10 isothermal flow reactor of 100 L capacity each operating at 60oC and exit conversion of both the reactor are operated in series when (i) both the reactors are back mixed reactors (ii) an ideal PFR followed by an back mixed rectors
- Q.8. a. A graphical procedure for finding the outlet composition from a series of mixed 10 flow reactors of various sizes for reactions
 - b. Discuss the qualitative treatment about the product distribution of decomposition of A, for reaction of type
 A→R desired product, rate constant K₁
 A→S undesired product, rate constant K₂
- Q. 9. a. Derive the expression heat of reaction and temperature for the reaction

 $aA \rightarrow rR + sS$

10

- b. What is adiabetic operation? Explain material balance and conversion for adiabetic operation
- Q. 10. a. Sketch and explain the different ways of representing the relationship of 10 temperature, composition and rate of reaction
 - Derive an expression for effects of temperature on heat of reaction from 10 thermodynamics.