Model Question Paper-1 with effect from 2019-20 (CBCS Scheme)

USN

Fifth Semester B.E. Degree Examination

Automata Theory and Computability

TIME: 03 Hours

Max. Marks: 100

Note: 01. Answer any **FIVE** full questions, choosing at least **ONE** question from each **MODULE**.

Module – 1								
	Define the following terms with examples: Alphabet, Power of an alphabet,							
	(a)	Concatenation and Languages.						
Q.1		Define DFSM. Design a DFSM to accept each of the following languages:						
-	(b)	i) $L = \{w \in \{0,1\}^* : w \text{ has } 001 \text{ as a substring}\}$						
		ii) $L=\{w\in\{0,1\}^*: w \text{ has even number of a's and even number of b's}\}$						
	1	OR						
	Convert the following NDESM to DESM							
		$\left \begin{array}{c} \delta \\ \delta $						
	(2)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10					
	(4)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
		$*_{\mathbf{r}} $ {} {} {} {}						
		Define distinguishable and indistinguishable states. Minimize the following DFSM.						
0.2		δ a b						
X		->A B F						
		B G C						
	(h)	*C A C	10					
	(0)	D C G	10					
		E H F						
		F C G						
		Module – 2	10					
	(a)	Define Regular expression. Write the regular expression for the following languages:						
		1) Representing for strings of a's and b's having odd length.						
		ii) To accept strings of a's and b's such that third symbol from the right is a and fourth symbol from the right is h						
Q.3		Use the femtoregeveluristic algorithm to construct a regular expression that describes	10					
	(b)	L(M).	10					
		$\begin{bmatrix} \delta & a & b \end{bmatrix}$						
		->*1 2 {}						
		*2 3 1						
		3 3 1						
	(a) Show that regular languages are closed under complement and intersection							
		State and prove numping lemma theorem for regular languages. And show that the	12					
	(b) $ \text{ language } L = \{ww^r; w \in \{0,1\}^*\} \text{ is not regular.} $							
0.4								
1 .4	<u> </u>							

18CS54

Module – 3				
Q.5	(a)		10	
· ·		Define CFG. Design CFG for the languages		
		i) $L=\{0^{2n}1^m n \ge 0, m \ge 0\}$		
		ii) $L = \{0^{i}1^{j}2^{k} i=j \text{ or } j=k\}$		

18CS54

		Define Ambiguity. Consider the grammar $E \rightarrow E + E E^*E (E) id$. Find the leftmost,					
	(0)	^{b} rightmost derivations and parse trees for the string id+id*id. And show that this					
		grammar is ambiguous.					
OR							
	(a)	Define CNF. Convert the following CFG to CNF.	10				
		S->aACa					
Q.6		A->B/a					
	B->C/c						
	$C \rightarrow cC/\epsilon$						
	(b) Define PDA. Design a PDA to accept the following language. $L=\{a^nb^n; n \ge 0\}$. Dra						
	the transition diagram for the constructed PDA. Show the ID's for the string aaabbb.						
		Module – 4					
	(a)	With a neat diagram, explain variants of Turing Machines	10				
	(b)	Explain Language Acceptability and Design of Turing Machines.	8				
0.7							
OR							
	(a)	Define a Turing machine. Explain the working of a Turing machine.	8				
Q.8		Design a Turing machine to accept $L = \{0^n 1^n 2^n n \ge 0\}$. Draw the transition diagram	12				
	(D)	Show the moves made for string aabbcc.	12				
		Module – 5					
	(a)	Explain post correspondence problem.	7				
		Explain Halting problem in Turing machine.	6				
09	(\mathbf{D})	Eveloin requiringly enumerable language	7				
Q.7	(C)	Explain recursively enumerable language.	1				
OR							
	(a)	Explain Church Turing thesis.	7				
_	(b)	Explain Quantum computer.	6				
Q.10	(c)	Explain Growth rate of function.	7				

Table showing the Bloom's Taxonomy Level, Course Outcome and Programme								
Outcome								
Question		Bloom's Taxonomy L attached	evel	el Course Outcome		Programme Outcome		
Q.1	(a)	L1		1	1	,12		
_	(b)	L1,L3		2	1	,2,12		
	(c)							
Q.2	(a)	L3		2	1	,2,12		
-	(b)	L1,L3		2	1	,2,12		
	(c)							
Q.3	(a)	L2		3	1	,2,3,4,12		
	(b)	L3		3	1	,2,3,4,12		
	(c)							
Q.4	(a)	L2		3	1	,2,3,4,12		
	(b)	L2,L3		3	1	,2,3,4,12		
	(c)							
0.5	(a)	L1,L3		3	1	,2,3,4,12		
	(b)	L2		3	1	,2,3,4,12		
	(c)							
0.6	(a)	L1,L3		4	1	,2,3,4,12		
	(b)	L1,L3		3	1	,2,3,4,12		
	(c)	,						
0.7	(a)	L2,L3		3	1	,2,3,4,12		
	(b)	L2		3	1	,2,3,4,12		
	(c)							
0.8	(a)	L2		4	1	,2,3,4,12		
	(b)	L3		4	1	,2,3,4,12		
	(c)							
0.9	(a)	L2		5	1	,2,12		
-	(b)	L2		5	1	,2,12		
	(c)	L2		5	1	,2,12		
Q.10	(a)	L2		5	1	,2,12		
-	(b)	L2		5	1	,2,12		
	(c)	L2		5	1	,2,12		
	•							
			Lower	order thinking skill	ls			
Bloom's		Remembering(Understa	inding		Applying (Application):		
Taxonomy Lovolc		knowledge): L_1	Compreh	ension): L ₂	la	<i>L</i> ₃		
LEVEIS		Analyzing (Analysis): I	Valuating (Evaluation): Le Croating (Synthesis): L			Creating (Synthesis): L		
	I	maryzing (milarysis). L4	v aruatiliş	5 (Evaluation), <i>E</i> 5		Creating (Synthesis). L6		

