Model Question Paper -1 with effect from 2020-21(CBCS Scheme)

USN

Fifth Semester B.E. Degree Examination DESIGN OF RC STRUCTURAL ELEMENTS

TIME: 03 Hours

Max. Marks: 100

- Note: 01. Answer any **FIVE** full questions, choosing at least **ONE** question from each **MODULE**. 02. Use of IS: 456-2000, SP-16 is permitted.
 - 03. Assume suitable additional data, if necessary.

Q.1(a)Elaborate on the philosophy and principles of Limit State Method of RCC desite(b)Write brief notes on: a) Partial safety factor for loads, b) Partial safety factor for materials, c) Characteristic loads, d) Characteristic strength.Q.2(a)Explain the terms: balanced, under reinforced and overreinforced sections.(b)A simply supported beam of rectangular section 250 mm wide by 450 mm of depth is used over an effective span of 4m. The beam is reinforced with 3 bars mm diameter Fe-415 HYSD bars at an effective depth of 400 mm. Two hanged	ign. 08M 12M 12M 06M overall 14M								
 (b) Write brief notes on: a) Partial safety factor for loads, b) Partial safety factor for materials, c) Characteristic loads, d) Characteristic strength. Q.2 (a) Explain the terms: balanced, under reinforced and overreinforced sections. (b) A simply supported beam of rectangular section 250 mm wide by 450 mm of depth is used over an effective span of 4m. The beam is reinforced with 3 bars mm diameter Fe-415 HYSD bars at an effective depth of 400 mm. Two hanged 	12M 06M overall 14M								
 b) Partial safety factor for materials, c) Characteristic loads, d) Characteristic strength. OR Q.2 (a) Explain the terms: balanced, under reinforced and overreinforced sections. (b) A simply supported beam of rectangular section 250 mm wide by 450 mm of depth is used over an effective span of 4m. The beam is reinforced with 3 bars mm diameter Fe-415 HYSD bars at an effective depth of 400 mm. Two hange 	06M overall 14M								
 c) Characteristic loads, d) Characteristic strength. OR Q.2 (a) Explain the terms: balanced, under reinforced and overreinforced sections. (b) A simply supported beam of rectangular section 250 mm wide by 450 mm of depth is used over an effective span of 4m. The beam is reinforced with 3 bars mm diameter Fe-415 HYSD bars at an effective depth of 400 mm. Two hanged 	06M overall 14M								
d) Characteristic strength. OR Q.2 (a) Explain the terms: balanced, under reinforced and overreinforced sections. (b) A simply supported beam of rectangular section 250 mm wide by 450 mm depth is used over an effective span of 4m. The beam is reinforced with 3 bars mm diameter Fe-415 HYSD bars at an effective depth of 400 mm. Two hanged	06M overall 14M								
OR Q.2 (a) Explain the terms: balanced, under reinforced and overreinforced sections. (b) A simply supported beam of rectangular section 250 mm wide by 450 mm of depth is used over an effective span of 4m. The beam is reinforced with 3 bars mm diameter Fe-415 HYSD bars at an effective depth of 400 mm. Two hanged	06M overall 14M								
 Q.2 (a) Explain the terms: balanced, under reinforced and overreinforced sections. (b) A simply supported beam of rectangular section 250 mm wide by 450 mm depth is used over an effective span of 4m. The beam is reinforced with 3 bars mm diameter Fe-415 HYSD bars at an effective depth of 400 mm. Two hanged 	06M overall 14M								
(b) A simply supported beam of rectangular section 250 mm wide by 450 mm depth is used over an effective span of 4m. The beam is reinforced with 3 bars mm diameter Fe-415 HYSD bars at an effective depth of 400 mm. Two hange	overall 14M								
depth is used over an effective span of 4m. The beam is reinforced with 3 bar mm diameter Fe-415 HYSD bars at an effective depth of 400 mm. Two hange									
mm diameter Fe-415 HYSD bars at an effective depth of 400 mm. Two hange	s of 20								
1 0 0	er bars								
of 10 mm diameter are provided. The self weight of the beam together with the	e dead								
load on the beam is 4 kN/m. Service live load = 10 kN/m. Using M-20 grade co	ncrete,								
compute									
i. Short term deflection.									
ii. Long term deflection according to the provisions of the Indian Standards IS: 456-2000.	s Code								
Module – 2									
Q.3 (a) Derive from fundamentals the expression for the area of stress block 0.36 $f_{ck}X_u$. 08M								
(b) A R.C. Beam of section 300mm X 550mm (overall) is reinforced with 4 bars of	16mm 12M								
with an effective cover of 50 mm. The beam is simply supported over effective	ve span								
of 5m. Find the maximum load carrying capacity of the beam inclusive of	of 5m. Find the maximum load carrying capacity of the beam inclusive of its self								
weight. Use M-20 concrete and Fe-415 HYSD bars.									
OR									
Q.4 (a) Derive the moment of resistance equation for singly reinforced rectangular sect	ion. 10M								
(b) A reinforced concrete beam has a support section with a width of 250mm and ef	fective 10M								
depth of 500mm. The support section is reinforced with 3 bars of 20mm diame	eter on								
the tension side. 8mm diameter 2 legged stirrups are provided at a spacing of 2	200mm								
centers. Using M-20 grade concrete and Fe-415 HYSD bars, calculate the	e shear								
strength of the support section.									
Module – 3									
0.5 (a) Design a reinforced concrete beam of rectangular section using the following d	ata: 20M								
Effective span = 5m, Width of beam = 250mm, Overall depth = 500mm, Live	load =								
37kN/m. Effective cover = 50mm. Materials: M-20 grade concrete & Fe-415 HYS									
bars.									

18CV53

OR									
Q.6	(a)	(a) Design a L- Beam for an office floor to suit the following data: Clear span = L = 8m, Thickness of flange = D_f =150mm, Live load = 4kN/m ² , Spacing of beams = 3m, f_{ck} = 20N/mm ² , f_y = 415N/mm ² , Width of columns = 300mm. L- Beams are monolithic with R.C columns.							
	Module – 4								
Q.7	Q.7 (a) Design a R.C slab for a room of clear size 4m x 5m. The slab is supported on walls of 300mm thickness with two adjacent edges continuous and other two edges discontinuous. Live load is 3kN/m ² . Assume floor finish as 0.6kN/ m ² . Use M-20 concrete and Fe-415 HYSD bars. Sketch the reinforcement details.								
	•	OR							
Q.8	(a)	Design one of the flights of a doglegged staircase spanning between landing beams using following data: No. of steps = 10, Tread = 300mm, Riser = 150mm, width of landing beam = 300mm, Live load = 3.5 kN/m ² , Grade of Concrete = M-20, Grade of Steel = Fe-415.	10M						
	(b)	Design one of the flights of an open well staircase which consists of landing on both sides and embedded into the wall of 230mm thick for the following data: No. of steps = 6, width of landing = $1.1m$, Live load = $3kN/m^2$, Grade of Concrete = M-20, Grade of Steel = Fe-415.	10M						
		Module – 5							
Q.9	(a)	Design the reinforcements in a rectangular column of size 300mm x 500mm to support a design ultimate load of 500kN together with a factored moment of 200kNm. Adopt the values of $f_{ck} = 20N/mm^2$, $f_y = 415N/mm^2$.	10M						
	(b)	Design the reinforcements in a circular column of diameter 400mm to support a factored load of 800kN together with a factored moment of 80kNm. Adopt M-20 grade of concrete and Fe-415 HYSD bars.	10M						
		OR							
Q.10		Design a footing of uniform depth for a short axially loaded column of size 300mm x 500mm. The column carries an axial service load of 800kN in compression. SBC of foundation soil is 185kN/m ² . Use M20 concrete and Fe415 steel. Sketch the reinforcement details.	20M						

Table showing the Bloom's Taxonomy Level, Course Outcome and Programme Outcome									
Question		Bloom's Taxonomy Level		Course Outcome	Programme Outcome				
01	(a)	L1			PO1 PO2				
V .1	(\mathbf{u})	L1		C01	PO1 PO2				
0.2	(a)	L1		CO1	PO1.PO2				
×	(b)	L2		CO1	PO1.PO2				
0.3	(a)	L1		CO2	PO1.PO2				
X	(b)	L2		CO2	PO1.PO2				
0.4	(a)	L1		CO2	PO1.PO2				
•	(b)	L2		CO2	PO1,PO2				
Q.5		L4		CO3,CO4	PO1,PO2				
Q.6		L4		CO3,CO4	PO1,PO2				
Q.7		L4		CO3,CO4	PO1,PO2				
Q.8	(a)	L4		CO3,CO4	PO1,PO2				
	(b)	L4		CO3,CO4	PO1,PO2				
Q.9	(a)	L4		CO3,CO4	PO1,PO2				
	(b)	L4		CO3,CO4	PO1,PO2				
Q.10		L4		CO3,CO4	PO1,PO2				
Lower order thinking skills									
Bloom's	8	Remembering	Understanding		Applying (Application):				
r axonomy Levels		(KIIOwieuge).L1	Higher order thinking skills						
		Analyzing (Analysis): L ₄	Valuating	(Evaluation): L_5	Creating (Synthesis): L_6				

Extended to the second second