Model Question Paper -1 with effect from 2020-21(CBCS Scheme)

USN \square

Fifth Semester B.E. Degree Examination

 Information Theory and CodingTIME: 03 Hours
Max. Marks: 100

Note: 01. Answer any FIVE full questions, choosing at least ONE question from each MODULE.
02.
03.

Module - 1			
Q. 1	(a)	Define (i) Self information Also justify why to take logarithmic function for measurement of self-information? (ii)Entropy (iii)Rate of source	6
	(b)	(i) State the properties of entropy (ii) Drive an expression for average information content of symbols in long independent sequence.	8
	(c)	The international Morse code uses a sequence of dots and dashes to transmit letters of the English alphabet. The dash is represented by a current pulse that has a duration of 3 units and the dot has a duration of 1 unit. The probability of occurrence of a dash is 1 of the probability of occurrence of a dot. (i) Calculate the information content of a dot and a dash. (ii) Calculate the average information in the dot-dash code. (iii) Assume that the dot lasts 1 msec , which is the same time interval as the pause between symbols. Find the average rate of information transmission.	6
OR			
Q. 2	(a)	For the markov source shown below find i) State entropies ii)Source entropy iii) G1 G2 and show that G1 $\geq \mathrm{G} 2 \geq \mathrm{H}(\mathrm{s})$.	10
	(b)	Prove that entropy of zero memory extension source is given by $\mathrm{H}\left(S^{n}\right)=n H(S)$.	5
	(c)	A binary source is emitting an independent sequence of O's and 1 's with probabilities p and $1-p$, respectively. Plot the entropy of this source versus $\mathrm{p}(0<\mathrm{P}<1)$.	5
Module - 2			
	(a)	State and prove source encoding theorem	8
	(b)	A Memory less source emits six messages with probabilities $\{0.4,0.2,0.2,0.1,0.1\}$. Find the Shannon - Fano code and determine its efficiency	6

Q. 3	(c)	Construct the Huffman code with minimum code variance for the following probabilities and also determine the code variance and code efficiency: $\{0.25,0.25 .0 .125,0.125,0.125,0.0625$, $0.0625\}$	6
OR			
Q. 4	(a)	State and prove Kraft McMillan Inequality	10
	(b)	Design a source encoder using Shannon encoding algorithm for the information source given Compare the average output bit rate and efficiency of the coder for $\mathrm{N}=1$ and 2	10
	(c)		
Module - 3			
Q. 5	(a)	What is mutual information? Mention its properties.	4
	(b)	Discuss the Binary Erasure Channel and also derive channel capacity equation for BEC	8
	(c)	The noise characteristics of a channel as shown below. Find the capacity of a channel if $\mathrm{r}_{\mathrm{s}}=2000$ symbols/sec using Muroga's method.	8
OR			
Q. 6	(a)	What is joint probability matrix? State its properties	4
	(b)	Find the Channel capacity of the channel with channel matrix shown below $\begin{gathered} \\ \mathrm{x}_{1} \\ \mathrm{x}_{2} \\ \mathrm{x}_{3} \\ \mathrm{x}_{4} \end{gathered}\left[\begin{array}{cccc} \mathrm{y}_{1} & \mathrm{y}_{2} & \mathrm{y}_{3} & \mathrm{y}_{4} \\ 0.2 & 0 & 0 & 0.05 \\ 0 & 0.15 & 0.15 & 0 \\ 0 & 0 & 0.10 & 0.05 \\ 0.10 & 0.10 & 0 & 0.10 \end{array}\right]$	6
	(c)	Consider that two sources emit messages $\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3$ and $\mathrm{y} 1, \mathrm{y} 2, \mathrm{y} 3$ with the joint probabilities $\mathrm{p}(\mathrm{X}, \mathrm{Y})$ as shown in the matrix form:	10

OR			
Q.10	(a)	Consider a (3,1,2) Convolution Encoder with $\mathrm{g}^{(1)}=110, \mathrm{~g}^{(1)}=101$ and $\mathrm{g}^{(1)}=111$ (i) (ii) Draw the encoder diagram Find the code word for the message sequence (11101) using Generator Matrix and Transform domain approach.	15
	(b)	Explain Viterbi decoding	5
(c)			

Table showing the Bloom's Taxonomy Level, Course Outcome and Programme Outcome					
Question		Bloom's Taxonomy Level attached		Course Outcome	Programme Outcome
Q. 1	(a)	L1		CO1	PO1,PO2
	(b)	L1		CO1	PO1,PO2
	(c)	L2		CO1	PO1,PO2
Q. 2	(a)	L2		CO1	PO1,PO2
	(b)	L1		CO1	PO1,PO2
	(c)	L2		CO1	PO1,PO2
Q. 3	(a)	L1		CO2	PO1,PO2,PO3
	(b)	L2		CO2	PO1,PO2,PO3
	(c)	L3		CO2	PO1,PO2,PO3
Q. 4	(a)	L1		CO2	PO1,PO2,PO3
	(b)	L2		CO2	PO1,PO2,PO3
	(c)				
Q. 5	(a)	L1		CO3	PO1,PO2,PO3
	(b)	L2		CO3	PO1,PO2,PO3
	(c)	L3		CO3	PO1,PO2,PO3
Q. 6	(a)	L1		CO3	PO1,PO2,PO3
	(b)	L3		CO3	PO1,PO2,PO3
	(c)	L3		CO3	PO1,PO2,PO3
Q. 7	(a)	L2		CO4	PO1,PO2,PO3
	(b)	L3		CO4	PO1,PO2,PO3
	(c)				
Q. 8	(a)	L1		CO4	PO1,PO2,PO3
	(b)	L3		CO4	PO1,PO2,PO3
	(c)	L2		CO4	PO1,PO2,PO3
Q. 9	(a)	L1		CO5	PO1,PO2,PO3,PO4
	(b)	L2		CO5	PO1,PO2,PO3,PO4
	(c)				
Q. 10	(a)	L2		CO5	PO1,PO2,P03,PO4
	(b)	L1		CO5	PO1,PO2,P03,PO4
	(c)				
Bloom's Taxonomy Levels		Lower order thinking skills			
		Remembering(knowledge): L_{1} Understanding Comprehension): L_{2}			Applying (Application): L_{3}
		Higher order thinking skills			
		Analyzing (Analysis): L_{4}	Valuating (Evaluation): L_{5}		Creating (Synthesis): L_{6}

