CBCS Scheme

USN										

Fifth Semester B E Degree Examination Dec. 2020/Jan. 2021
 Model Question Paper
 Signals and Systems

Time: $\mathbf{3} \mathbf{h r s}$
Max. Marks: 100
NOTE: Answer any FIVE full questions, choosing ONE full question from each module.

Module 1

1
a) Define Signals and Systems. And explain classificaion of Signals.
b) Obtain even and odd part of the given signal $x(t)=\cos (t)+\sin (t)+\sin t \cos t$
c) Skect the signal $y(t)=\{x(t)+x(2-t)\} u(1-t)$ for the signal in fig (1.c)

Fig(1.c)

OR
2
a) Explain the properties of Systems.
(6 Marks)
b) For the triangular wave shown below in $\operatorname{fig}(2 . b)$. find the average power. With time period $\mathrm{T}=2 \mathrm{sec}$.
(8 Marks)

Fig (2.b)

CBCS Scheme

18EE54
c) Determine the system $\mathrm{Y}(\mathrm{t})=\mathrm{x}(\mathrm{t} / 2)$ is \quad i) Linear \quad ii) Time invarient iii) Memory iv) casual v) stable.
(6 Marks)

Module 2
3
a) Consider a continuous time LTI system with unit impulse response. $h(t)=u(t)$ and input $x(t)=e^{-a t} u(t)$; where $a>0$. Find out put $y(t)$ of the system.
(10 Marks)
b) Solve the difference equation $y(n)-(1 / 9) y(n-2)=2 x(n-1)$ with initial conditions $y(-1)=$ $1, y(-2)=0$, For $x(n)=u(n)$ find the total overall response, natural response, forced response, zero input response and zero state response
(10 Marks)
OR
4
a) Represent the differential equation given below in direct form I and direct form II:
(10 Marks)

$$
\frac{d^{2} y(t)}{d t^{2}}+\frac{d y(t)}{d t}+2 y(t)=\frac{d^{2} x(t)}{d t^{2}}+\frac{d x(t)}{d t}
$$

b) The impulse response of the systems is given by, $h(t)=e^{2 t} u(t-1)$ and $h(n)=e^{3 n} u(-n)$. Check whether the system is stable, casual and memoryless.

Module 3

a) Find Fourier Transform of the signal $x(t)=e^{-3|t|} \operatorname{Sin}(2 t)$, using appropriate property.
(10 Marks)
b) Find the frequency response of a containious time LTI sysstem represnted by the impulse response.
(10 Marks)
$h(t)=e^{-t \mid l}$

OR

CBCS Scheme

18EE54
a) Find the frequency response and impulse response of the system having $y(t)=e^{-2 t} u(t)+$ $e^{-3 t} u(t)$, for the input $x(t)=e^{-t} u(t)$
(10 Marks)
b) Find the inverse Fourier transform of
ii) $X(\mathrm{j} \omega)=(5 \mathrm{j} \omega+12) /\left((\mathrm{j} \omega)^{2}+5 \mathrm{j} \omega+6\right)$
i) $\mathrm{k}(\mathrm{j} \omega)=\frac{j \omega}{(2+j \omega) 2}$
(10 Marks)

Module 4

7
a) State and explain parseval's theorem of discrete time Fourier transform. ($\mathbf{1 0}$ Marks)
b) A discrete time LTI system described by $y(n)-(1 / 2) y(n-1)=x(n)+(1 / 2) x(n-1)$
I. Determine the frequency response $H(\Omega)$
II. Find the impulse response $\mathrm{h}(\mathrm{n})$ of the system
(10 Marks)

OR

8
a) Using the appropriat properties, find the DTFT of the following signal. $\mathrm{X}(\mathrm{n})=\sin \left(\frac{\pi}{4} n\right)\left(\frac{1}{4}\right)^{\mathrm{n}}$ $\mathrm{u}(\mathrm{n}-1)$.
(10 Marks)
b) Find the Fourier transform of the signal
(10 Marks)
I. $\quad \mathrm{x}(\mathrm{n})=\mathrm{a}^{\mathrm{nn} \mid} ;|\mathrm{a}|<1$
II. $\quad x(n)=\left(\alpha^{\mathrm{n}} \sin (\Omega \mathrm{n})\right) \mathrm{u}(\mathrm{n})$

Module 5

9
a) Explain the properties of ROC.
(8 Marks)
b) Find the Z transform and ROC of the functions
i) $\alpha^{n} u(n) \quad$ ii) $a^{|n|}$
(12 Marks)
OR

10
a) Determine whether the system described below is casual and stable.
(12 Marks)
i) $\mathrm{H}(\mathrm{z})=\frac{2 Z+1}{Z 2+Z-5 / 16}$
ii) $\quad \mathrm{H}(\mathrm{Z})=\left(1+2 \mathrm{Z}^{-1}\right) /\left(1+\frac{14}{8} \mathrm{Z}^{-1}+\frac{49}{64} \mathrm{Z}^{-2}\right)$
b) Explain the properties of Z transform.
(8 Marks)

