CBCS Scheme

18EE54

USN				
-----	--	--	--	--

Fifth Semester B E Degree Examination Dec. 2020/Jan.2021 **Model Question Paper Signals and Systems**

Time: 3 hrs

Max. Marks: 100

NOTE: Answer any FIVE full questions, choosing ONE full question from each module.

Module 1

1

- a) Define Signals and Systems. And explain classification of Signals. (8 Marks)
- b) Obtain even and odd part of the given signal x(t)=cos(t)+sin(t)+sint cost(4 Marks)
- c) Skect the signal $y(t) = \{x(t) + x(2-t)\} u(1-t)$ for the signal in fig (1.c)

(8 Marks)

2

a) Explain the properties of Systems.

(6 Marks)

b) For the triangular wave shown below in fig(2.b). find the average power. With time period T=2 sec.

Fig (2.b)

CBCS Scheme

18EE54

c) Determine the system Y(t) =x(t/2) is i) Linear ii) Time invarient iii) Memory iv) casual v) stable.
(6 Marks)

Module 2

3

- a) Consider a continuous time LTI system with unit impulse response. h(t) = u(t) and input $x(t) = e^{-at} u(t)$; where a >0. Find out put y(t) of the system. (10 Marks)
- b) Solve the difference equation y(n) (1/9)y(n-2) = 2x(n-1) with initial conditions y(-1) = 1, y(-2) = 0, For x(n) = u(n) find the total overall response, natural response, forced response, zero input response and zero state response (10 Marks)

OR

4

a) Represent the differential equation given below in direct form I and direct form II:

(10 Marks)

$$\frac{d^2y(t)}{dt^2} + \frac{dy(t)}{dt} + 2y(t) = \frac{d^2x(t)}{dt^2} + \frac{dx(t)}{dt}$$

b) The impulse response of the systems is given by, $h(t)=e^{2t}u(t-1)$ and $h(n)=e^{3n}u(-n)$. Check whether the system is stable, casual and memoryless. (10 Marks)

Module 3

- 5
- a) Find Fourier Transform of the signal $x(t) = e^{-3|t|} Sin(2t)$, using appropriate property.

(10 Marks)

b) Find the frequency response of a containious time LTI sysstem represented by the impulse response. (10 Marks)

 $h(t)=e^{-|t|}$

OR

CBCS Scheme

a) Find the frequency response and impulse response of the system having $y(t)=e^{-2t}u(t) + e^{-3t}u(t)$, for the input $x(t)=e^{-t}u(t)$ (10 Marks)

b) Find the inverse Fourier transform of ii) $X(j\omega)=(5j\omega+12) / ((j\omega)^2 + 5j\omega + 6)$

i)
$$k(j\omega) = \frac{j\omega}{(2+j\omega)^2}$$

(10 Marks)

Module 4

7

- a) State and explain parseval's theorem of discrete time Fourier transform. (10 Marks)
- b) A discrete time LTI system described by y(n) (1/2)y(n-1) = x(n) + (1/2)x(n-1)
 - I. Determine the frequency response $H(\Omega)$
 - II. Find the impulse response h(n) of the system

(10 Marks)

8

a) Using the appropriat properties, find the DTFT of the following signal. $X(n)=sin(\frac{\pi}{4}n)(\frac{1}{4})^n$ u(n-1). (10 Marks)

OR

- b) Find the Fourier transform of the signal (10 Marks)
 - I. $x(n) = a^{|n|}; |a| < 1$
 - II. $x(n) = (\alpha^n \sin(\Omega n))u(n)$

Module 5

9

- a) Explain the properties of ROC. (8 Marks)
- b) Find the Z transform and ROC of the functions i) $\alpha^n u(n)$ ii) $a^{|n|}$ (12 Marks)
 - OR

10

a) Determine whether the system described below is casual and stable. (12 Marks)

i)
$$H(z) = \frac{2Z+1}{Z^2+Z-5/16}$$

ii)
$$H(Z) = (1+2Z^{-1}) / (1+\frac{14}{8}Z^{-1}+\frac{49}{64}Z^{-2})$$

b) Explain the properties of Z transform.

(8 Marks)

18EE54