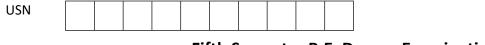
Model Question Paper (2018 Scheme)

Fifth Semester B.E. Degree Examination **18IP53: Quality Assurance and Reliability**

TIME: 03 Hours

Max. Marks: 100

Note: Answer any one full question from each module


						Mad	lule - 1						Marks
Q.01	a)	Define Qual	•	•		•	•		s with ex	amples			07
	b)	What is qua	,										06 07
	c)	Distinguish between cost of quality and value of quality. How do you balance them?											
0.00		14/1		1			OR						07
Q.02	a)	What is a qu											07 06
	b)	What factors influence the frequency of quality audit?Define a quality budget? List and briefly explain the three stages of preparing a quality budget.											
	c)	Define a qua	ality bud	get? List	and brie				ges of pr	eparing	a quality	budget.	07
						Mo	dule –	2					
Q. 03	a)	Distinguish	clearly b	etween	chance c	auses ar	nd assign	able cau	ises of va	ariation,	with exa	mples.	06
	b)	Distinguish clearly between variables and attributes giving examples											
	c)	Ten aircraft wings are inspected for non conforming welds. The number of non-conforming welds per wing ranged from 26 to 55. The total number of non-conforming welds after inspection was 360. Compute the control limits for an appropriate control charts and comment on the status of control.											10
		•					OR						
Q.04	a)	What is a control chart? What are its objectives?											
	b)	Explain the probability distribution governing the control chart for defects.											
	c)	The following are the inspection results of defective castings produced in 10 days. Calculate the average fraction defective and 3sigma control limits for a control chart. Construct the control chart and find the status of control.											
		Day	1	2	3	4	5	6	7	8	9	10	
		No. of Castings produced	154	152	148	150	154	145	151	154	150	153	10
		No. of defective castings	4	2	2	4	3	4	2	2	1	4	
						Moc	lule – 3	3		•	•		
Q. 05	a)	What is a R	unsum t	est? Exp	lain brie	flv with a	a neat sk	etch					06
•	b)	Control cha				•			rocess v	vhich is l	known to	o have a	
	-,							•					
	standard deviation of 0.08 units and aimed at mean of 32 units. Subgroup size is 5.												

_									
	(i) Determine the control chart limits for both the charts								
		14							
1	OR								
a)	a) Distinguish clearly between defects and defectives giving examples								
b)	Control chart for X bar and R are to be maintained for a part which has the specification of								
	2.05±0.02 mm. The sample size is 4. The values of sum of X bar and Sum of R after 20								
	subgroups are 41.283mm and 0.28mm respectively. Compute the trial control limits for X bar								
	to meet the given specifications? How to improve the situations?								
	Module – 4								
a)	a) Using a neat sketch explain an item by item Sequential Sampling Plan								
b)									
	N = 5000; $n_1 = 40$; $n_2 = 60$; $C_1 = 0$; $C_2 = 3$; $p = 1\%$;	12							
	Compute:								
	(i) Probability of Acceptance P _a (ii) ATI								
	(iii) If the rejected lots are 100% inspected, what is AOQ?								
1.	OR	08							
b)									
	(With the usual notations). Lot size is very large compared to sample size.								
	n =100; c = 4;								
	· ·								
	Module – 5								
a)									
		08							
	250mm and 251mm respectively. The corresponding standard deviations are 0.1mm and	08							
		08							
	250mm and 251mm respectively. The corresponding standard deviations are 0.1mm and	08							
b)	250mm and 251mm respectively. The corresponding standard deviations are 0.1mm and 0.3mm. If the parts are assembled at random, what percentage of assemblies will have	08							
b)	250mm and 251mm respectively. The corresponding standard deviations are 0.1mm and 0.3mm. If the parts are assembled at random, what percentage of assemblies will have positive clearance? A measuring instrument consists of two sub-assemblies A and B connected in series having respective probabilities of 0.90 and 0.92. The minimum reliability of the instrument must be at								
b)	250mm and 251mm respectively. The corresponding standard deviations are 0.1mm and 0.3mm. If the parts are assembled at random, what percentage of assemblies will have positive clearance? A measuring instrument consists of two sub-assemblies A and B connected in series having respective probabilities of 0.90 and 0.92. The minimum reliability of the instrument must be at 0.917. Determine how many units of A must be connected in parallel to unit B so as to achieve								
b)	250mm and 251mm respectively. The corresponding standard deviations are 0.1mm and 0.3mm. If the parts are assembled at random, what percentage of assemblies will have positive clearance? A measuring instrument consists of two sub-assemblies A and B connected in series having respective probabilities of 0.90 and 0.92. The minimum reliability of the instrument must be at								
b) c)	 250mm and 251mm respectively. The corresponding standard deviations are 0.1mm and 0.3mm. If the parts are assembled at random, what percentage of assemblies will have positive clearance? A measuring instrument consists of two sub-assemblies A and B connected in series having respective probabilities of 0.90 and 0.92. The minimum reliability of the instrument must be at 0.917. Determine how many units of A must be connected in parallel to unit B so as to achieve the required system reliability. What is standby redundancy? Explain with an example. 								
c)	250mm and 251mm respectively. The corresponding standard deviations are 0.1mm and 0.3mm. If the parts are assembled at random, what percentage of assemblies will have positive clearance? A measuring instrument consists of two sub-assemblies A and B connected in series having respective probabilities of 0.90 and 0.92. The minimum reliability of the instrument must be at 0.917. Determine how many units of A must be connected in parallel to unit B so as to achieve the required system reliability. What is standby redundancy? Explain with an example. OR	07							
	250mm and 251mm respectively. The corresponding standard deviations are 0.1mm and 0.3mm. If the parts are assembled at random, what percentage of assemblies will have positive clearance? A measuring instrument consists of two sub-assemblies A and B connected in series having respective probabilities of 0.90 and 0.92. The minimum reliability of the instrument must be at 0.917. Determine how many units of A must be connected in parallel to unit B so as to achieve the required system reliability. What is standby redundancy? Explain with an example. OR A rod is made up of 5 sections. The first and last sections have a mean length of 25.025mm,	07							
c)	250mm and 251mm respectively. The corresponding standard deviations are 0.1mm and 0.3mm. If the parts are assembled at random, what percentage of assemblies will have positive clearance? A measuring instrument consists of two sub-assemblies A and B connected in series having respective probabilities of 0.90 and 0.92. The minimum reliability of the instrument must be at 0.917. Determine how many units of A must be connected in parallel to unit B so as to achieve the required system reliability. What is standby redundancy? Explain with an example. OR A rod is made up of 5 sections. The first and last sections have a mean length of 25.025mm, while the middle three sections have a mean of 49.975mm. The standard deviation of each	07							
c)	250mm and 251mm respectively. The corresponding standard deviations are 0.1mm and 0.3mm. If the parts are assembled at random, what percentage of assemblies will have positive clearance? A measuring instrument consists of two sub-assemblies A and B connected in series having respective probabilities of 0.90 and 0.92. The minimum reliability of the instrument must be at 0.917. Determine how many units of A must be connected in parallel to unit B so as to achieve the required system reliability. What is standby redundancy? Explain with an example. OR A rod is made up of 5 sections. The first and last sections have a mean length of 25.025mm, while the middle three sections have a mean of 49.975mm. The standard deviation of each section is 0.01mm. Compute:	07							
c)	250mm and 251mm respectively. The corresponding standard deviations are 0.1mm and 0.3mm. If the parts are assembled at random, what percentage of assemblies will have positive clearance? A measuring instrument consists of two sub-assemblies A and B connected in series having respective probabilities of 0.90 and 0.92. The minimum reliability of the instrument must be at 0.917. Determine how many units of A must be connected in parallel to unit B so as to achieve the required system reliability. What is standby redundancy? Explain with an example. OR A rod is made up of 5 sections. The first and last sections have a mean length of 25.025mm, while the middle three sections have a mean of 49.975mm. The standard deviation of each	07							
	a) b) a) b)	 (ii) Determine the capability of the process assuming the process to be under statistical control (iii) If the process is used to meet the specification of 32±0.15, what is your conclusion? (iv) If the process is used to meet the specification of 32±0.15, what is your conclusion? (iv) If the process is used to meet the specification of 32±0.15, what is your conclusion? (iv) If the process is used to meet the specification of 32±0.15, what is your conclusion? (iv) If the process is used to meet the specification of 32±0.25, what is your conclusion? (v) If the process is used to meet the specification of 32±0.25, what is your conclusion? (v) If the process is used to meet the specification of a part which has the specification of 2.05±0.02 mm. The sample size is 4. The values of sum of X bar and Sum of R after 20 subgroups are 41.283mm and 0.28mm respectively. Compute the trial control limits for X bar and R charts. If the process is in control, what can you tell about the capability of this process to meet the given specifications? How to improve the situations? Module – 4 a) Using a neat sketch explain an item by item Sequential Sampling Plan b) A double sampling plan has the following specifications (with the usual notations); N = 5000; n₁ = 40; n₂ = 60; c₁ = 0; c₂ = 3; p = 1%; Compute: (i) Probability of Acceptance P_a (ii) ATI (iii) If the rejected lots are 100% inspected, what is AOQ? A probability of Acceptance P_a (iii) ATI (with the usual notations). Lot size is very large compared to sample size. n =100; c = 4; Determine Producer's risk = α and consumer's risk = β, if AQL = 1.5% and LTPD = 6% Module – 5 							

(2018 Scheme)

Fifth Semester B.E. Degree Examination 18IP53: Quality Assurance and Reliability

TIME: 03 Hours

Max. Marks: 100

Note: Answer any one full question from each module

		Module - 1	Marks											
Q.01	a)	What is a quality function? With a neat sketch explain the Juran's quality Spiral.												
	b)	What is quality of design? What factors influence it?	06											
	What are quality costs? How are they classified as per ASQC? Explain briefly.	07												
		OR												
Q.02	a)	Define quality assurance. List and explain the three stages of achieving quality assurance.	07											
	b) What are the different contents included in a quality audit?													
c) List and briefly discuss the four types of quality organizations used in industries.														
		Module – 2												
Q. 03	a)	a) With neat sketches explain the 3 possible cases of relationship between specification												
		tolerance (USL-LSL) and Natural tolerance (Process Capability).												
	b)	Explain the probability distribution governing the control chart for defectives.												
	c)	The data below shows the average number of outlet leaks per radiator for 10 lots of 100												
		radiators each. Construct an appropriate control chart and comment on the status of control.												
		Lot Number. 1 2 3 4 5 6 7 8 9 10	10											

		Leaks radiator	per	15	17	12	16	14	5	14	11 9	9 10		
				ł			OR							
Q.04	a)													
	b)) What is a variation? Explain the fundamental factors contributing to variation.											04	
	c)	From the fol Construct the	-		•				for an	appropr	iate con	trol chart.		
		Sample No	1	2	3	4	5	6	7	8	9	10		
		No. of defectives	10	12	8	9	11	8	10	11	9	12	10	
		No. of inspected items	90	110	90	100) 130	100	80	110	110	80		
	1			1		Mo	odule –	- 3			I			
Q. 05	a)	Distinguish b	etween	Unive	rse para	meters	and Sam	ple para	meters.	How are	they rela	ated?	06	
	b)													
		process is 119±10. If the process is in statistical control, compute the following:												
		 (i) Control limits for X bar and R chart (ii) Process capability (iii) Is the process able to meet the given specification? (iv) How to improve the situation? 												
		(iv) Ho	w to im	prove		ations	OR							
Q. 06	a)												06	
	b)	In the manuf obtained.	facturin	g of pr	ecision	pins, fiv	e pins ar	e taken	at a tim	e and th	e followi	ing data is		
		Sample No.	1	2	3	4	5	6	7	8	9	10	14	
				50.24	50.14	50.08	50.28	50.16	50.30	50.10	50.16	50.10		
				0.08	0.03	0.05	0.04 r and R c	0.09	0.04	0.04	0.05	0.07		
							nment o		tus of co	ntrol				
			ute the											
						Mo	odule –	- 4						
Q. 07	a)) Represent a Double sampling plan using a flow chart										06		
	b)	Draw the OC	Curve o	of a sir	ngle san	npling pl	an with	the follo	wing sp	ecificatio	ons (with	the usual		
	notations): N = 10,000; p = 150; C = 2;										14			
		N = 10,000; N = 150; C = 2; Determine Producer's risk = α and consumer's risk = β , if AQL =1% and LTPD = 4%												
							OR							
Q. 08	a)	What are OC	curves?	' Sketc	h an OC	curve ir	ndicating	its salie	nt param	eters.			06	

	b)	A double sampling plan has the following specifications (with the usual notations):	14								
		N=50,000; $n_1=150$; $n_2=100$; $C_1=0$; $C_2=1$; $p=1\%$;									
		Compute:									
		(ii) Probability of Acceptance P _a (ii) ATI									
		(iii) AFI (iv) ASN									
		Module – 5	07								
Q. 09	a)) Two mating parts P and Q have an average clearance specified as 0.06mm. Control charts indicate the standard deviations of the dimensions of P and Q AS 0.03mm and 0.04mm respectively. Find the probability of interference between the mating parts assuming normal distribution for all the dimensions.									
	b)) Starting from the basics derive an expression for Reliability of component, R(t) = $e^{-\lambda t}$									
	c)	Compare Parallel redundancy with standby redundancy. Which is better? Why?	06								
	,	OR									
Q. 10	a)) A circuit contains three resistors in series. The mean and standard deviation of the resistors are 125 Ω , 200 Ω , 600 Ω and 3 Ω , 4 Ω , 12 Ω respectively. Determine the percentage of circuits meeting the specifications of 930±30 Ω .									
	b)	Compute the reliability of the following system. $\begin{array}{c c} \hline D \\ \hline D \\ \hline C \\ \hline E \\ \hline B \\ \hline G \\ \hline$	12								