Model Question Paper-1 with effect from 2019-20 (CBCS Scheme)

USN

Fifth Semester B.E. Degree Examination AUTOMATA THEORY AND COMPUTABILITY

TIME: 03 Hours
Max. Marks: 100
Note: Answer any FIVE full questions, choosing at least ONE question from each MODULE.

Q. 4	(c)	Obtain NDFSM for the Regular expression (a+b)* abb and ($\left.\mathbf{a}^{*}+\mathbf{a b}\right) \mathbf{a} \mathbf{a}{ }^{*}$	6
Module - 3			
Q. 5	(a)	Define Context Free Grammer. Write the CFG for the following Languages. i) $\quad \mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{n}} \mathrm{c}^{\mathrm{m}}: \mathrm{n}, \mathrm{m}>=0\right\}$ ii) $\quad \mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{n}+2}: \mathrm{n}>=0\right\}$ iii) $\mathrm{L}=\left\{\mathrm{w} \in\{\mathrm{a}, \mathrm{b}\}^{*}: \mathrm{n}_{\mathrm{a}}(\mathrm{w})=\mathrm{n}_{\mathrm{b}}(\mathrm{w})\right\}$	8
	(b)	Define the following with example i) Leftmost Derivation ii) Rightmost Derivation iii) Parse Tree	6
	(c)	Define Ambiguous Grammar. Show that following grammar is Ambiguous. $\begin{aligned} & \mathrm{S} \rightarrow \mathrm{iCtS}\|\mathrm{iCtSeS}\| \mathrm{a} \\ & \mathrm{C} \rightarrow \mathrm{~b} \end{aligned}$	6
OR			
Q. 6	(a)	Discuss Chomsky normal form and Greibach normal form. Convert the following Grammar to Chomsky Normal form. $\begin{aligned} & S \rightarrow \mathrm{aACa} \\ & \mathrm{~A} \rightarrow \mathrm{~B} \mid \mathrm{a} \\ & \mathrm{~B} \rightarrow \mathrm{C} \mid \mathrm{c} \\ & \mathrm{C} \rightarrow \mathrm{cC} \mid \varepsilon \end{aligned}$	$` 10$
	(b)	Define NPDA. Write NPDA for the following languages i) $\quad L=\left\{w c w^{R} \mid w \in\{a, b\}^{*}\right\}$ ii) $\quad \mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{n}} \mid \mathrm{n}>=0\right\}$	10
Module - 4			
Q. 7	(a)	With a neat diagram, explain variants of Turing Machines.	10
	(b)	Explain Language Acceptability and Design of Turing Machines.	10
OR			
Q. 8	(a)	Define Turing Machine Model. Explain the representation of Turing Machines.	10
	(b)	Explain the Model of Linear bound Automation.	10
Module - 5			
Q. 9	(a)	Explain the following with example, i) Decidability ii) Decidable languages iii) Undecidable languages.	10
	(b)	Discuss Halting problem and post correspondence problem with respect to TM.	10
OR			
Q. 10	(a)	Write Short notes on i) Growth rate of Function ii) Classes of P and NP iii) Quantum Computers iv) Church Turing Thesis	20

Table showing the Bloom's Taxonomy Level, Course Outcome and Programme Outcome

Question		Bloom's Taxonomy Level attached		Course Outcome	Programme Outcome
Q. 1	(a)	L1		CO1	PO1,PO2,PO3,PO4,PO12
	(b)	L2		CO1	PO1,PO2,PO3,PO4,PO12
	(c)	L1		CO1	PO1, PO2,PO3,PO4,PO12
Q. 2	(a)	L3		CO1	PO1, PO2,PO3,PO4,PO12
	(b)	L1		CO1	PO1, PO2,PO3,PO4,PO12
	(c)	L3		CO1	PO1, PO2, PO3, PO4, PO12
Q. 3	(a)	L2		CO2	PO1, PO2,PO3,PO4,PO12
	(b)	L1		CO2	PO1,PO2,PO3,PO4,PO12
	(c)	L1		CO 2	PO1, PO2,PO3, PO4,PO12
Q. 4	(a)	L1		CO2	PO1, PO2, PO3, PO4, PO12
	(b)	L1		CO 2	PO1, PO2,PO3,PO4,PO12
	(c)	L2		CO2	PO1, PO2, PO3, PO4, PO12
Q. 5	(a)	L2		CO3	PO1, PO2,PO3,PO4,PO12
	(b)	L1		CO3	PO1, PO2, PO3, PO4, PO12
	(c)	L3		CO3	PO1, PO2,PO3,PO4, PO12
Q. 6	(a)	L3		CO3	PO1, PO2, PO3, PO4
	(b)	L2		CO3	PO1, PO2, PO3, PO4
Q. 7	(a)	L2		CO4	PO1, PO2, PO3, PO4
	(b)	L2		CO4	PO1, PO2, PO3, PO4
Q. 8	(a)	L2		CO4	PO1, PO2, PO3, PO4
	(b)	L2		CO4	PO1, PO2, PO3, PO4
Q. 9	(a)	L2		CO5	PO1, PO2, PO3, PO4
	(b)	L1		CO5	PO1, PO2, PO3, PO4
Q. 10 (a)		L1		CO5	PO1, PO2, PO3, PO4
Lower order thinking skills					
Bloom's Taxonomy Levels		knowledge): L_{1} Comprehension): L_{2}			Applying (Application): L_{3}
		Higher order thinking skills			
		Analyzing (Analysis): L_{4}	Valu	(Evaluation): L_{5}	Creating (Synthesis): L_{6}

