Model Question Paper-1 with effect from 2019-20 (CBCS Scheme)

USN

Fifth Semester B.E. Degree Examination AUTOMATA THEORY AND COMPUTABILITY

TIME: 03 Hours

Max. Marks: 100

Note: Answer any FIVE full questions, choosing at least ONE question from each MODULE.

Module – 1							
Q.1	(a)	Define the following with example. i). Alphabet ii). Power of an alphabet. iii). Concatenation iv). Language					
	(b)	 Define DFSM. Draw a DFSM to accepts i) decimal strings which are divisible by three. ii) L = {w / w ∈ {a,b}* is the string with even no. of a's and odd no. of b's} iii) L ={w / w ∈ {a,b}* is the string of a's and b's and end with the sub string abb} 					
	(c)	With a neat diagram, explain a hierarchy of language classes in Automata Theory					
		OR	1				
Q.2	(a)	Convert the following NDFSM to its equivalent DFSM. $\begin{array}{c c c c c c c c c c c c c c c c c c c $	8				
	(b)	Write a note on finite state transducers.					
	(c)	Minimize the following DFSM. 0 1 $\rightarrow A$ BBABACDCDB*DDAEDFFGGFHGD	8				
		Module – 2					
Q.3	(a)	 Define Regular expression. Write RE for the following Languages i) L = {a²ⁿb^{2m} n>=0, m>=0} ii) L = {w : w mod 3 = 0 where w ∈ {a,b}*} iii) Language of all strings of 0's and 1's that has at least one pair of consecutive 0's 					
	(b)	State and prove the Pumping Lemma Theorem for Regular languages.					
	(c)	Write the Applications of Regular Expressions.					
OR							
	(a)	Using Kleen's theorem, prove that any language that can be defined with a Regular 8 Expression can be accepted by some FSM.					
	(b)	Prove that the Regular Languages are Closed Under Complementation and Intersection.					

18CS54

Q.4	(c)	Obtain NDFSM for the Regular expression (a+b)* abb and (a * + ab) aab *							
Module – 3									
Q.5	.5 (a) Define Context Free Grammer. Write the CFG for the following Languages.								
		i) $L=\{a^n b^n c^m: n, m \ge 0\}$							
		ii) $L=\{a^n b^{n+2}: n>=0\}$							
		$\begin{array}{c c} 111 & L = \{ W \in \{a, b\}^*: n_a(W) = n_b(W) \} \\ \hline \\ \hline \\ Define the following with example \\ \hline \\ \end{array}$	6						
	(b)	i) Leftmost Derivation	0						
		i) Rightmost Derivation							
		iii) Parse Tree							
	(c)	Define Ambiguous Grammar. Show that following grammar is Ambiguous.							
	$S \rightarrow iCtS \mid iCtSeS \mid a$								
		$C \rightarrow b$							
	-	OR							
Q.6	(a)	Discuss Chomsky normal form and Greibach normal form. Convert the following	`10						
		Grammar to Chomsky Normal form.							
		$S \rightarrow aACa$							
		$A \rightarrow B \mid a$							
		$ \mathbf{B} \rightarrow \mathbf{C} _{\mathbf{c}}$							
		Define NPDA Write NPDA for the following languages	10						
	(b)	before NFDA. while NFDA for the following languages i) $I = \{w \in \mathbb{N}^R \mid w \in \{a, b,\}^*\}$	10						
		i) $L = \{wew \mid w \in \{a, b\}\}$ ii) $L = \{a^n b^n \mid n \ge 0\}$							
		Module – 4	I						
0.7	(a)	With a neat diagram, explain variants of Turing Machines.							
		Explain Language Acceptability and Design of Turing Machines.							
	(b)								
			10						
Q.8	(a)	Define Turing Machine Model. Explain the representation of Turing Machines.	10						
	(b)	Explain the Model of Linear bound Automation.	10						
Module - 5									
Q.9	(a)	Explain the following with example,	10						
		i) Decidability ii) Decidable languages iii) Undecidable languages.							
	(b)	Discuss Halting problem and post correspondence problem with respect to TM.	10						
		OR							
Q.10	(a)	Write Short notes on	20						
		i) Growth rate of Function							
		ii) Classes of P and NP							
		iii) Quantum Computers							
		iv) Church Turing Thesis							

Table showing the Bloom's Taxonomy Level, Course Outcome and Programme Outcome									
Question		Bloom's Taxonomy L attached	Level	Course Outcome		Programme Outcome			
Q.1	(a)	L1		CO1	F	PO1,PO2,PO3,PO4,PO12			
-	(b)	L2		CO1	F	PO1,PO2,PO3,PO4,PO12			
	(c)	L1		CO1	F	PO1, PO2, PO3, PO4, PO12			
Q.2	(a)	L3		CO1	F	PO1, PO2, PO3, PO4, PO12			
-	(b)	L1		CO1	F	PO1, PO2, PO3, PO4, PO12			
	(c)	L3		CO1	F	PO1, PO2, PO3, PO4, PO12			
Q.3	(a)	L2		CO2	F	PO1, PO2, PO3, PO4, PO12			
-	(b)	L1		CO2	F	PO1,PO2,PO3,PO4,PO12			
	(c)	L1		CO2	F	PO1, PO2, PO3, PO4, PO12			
Q.4	(a)	L1		CO2	F	PO1, PO2, PO3, PO4, PO12			
-	(b)	L1		CO2	F	PO1, PO2, PO3, PO4, PO12			
	(c)	L2		CO2	F	PO1, PO2, PO3, PO4, PO12			
Q.5	(a)	L2		CO3	F	PO1, PO2, PO3, PO4, PO12			
-	(b)	L1		CO3	F	PO1, PO2, PO3, PO4, PO12			
	(c)	L3		CO3	F	PO1, PO2, PO3, PO4, PO12			
Q.6	(a)	L3		CO3	F	PO1, PO2, PO3, PO4			
-	(b)	L2		CO3		PO1, PO2, PO3, PO4			
Q.7	(a)	L2		CO4	F	PO1, PO2, PO3, PO4			
-	(b)	L2		CO4	F	PO1, PO2, PO3 , PO4			
Q.8	(a)	L2		CO4	F	PO1, PO2, PO3, PO4			
-	(b)	L2		CO4	F	PO1, PO2, PO3, PO4			
Q.9	(a)	L2		CO5	F	PO1, PO2, PO3, PO4			
-	(b)	L1		CO5	F	PO1, PO2, PO3, PO4			
Q.10	(a)	L1		CO5	F	PO1, PO2, PO3, PO4			
Lower order thinking skills									
Bloom's		Remembering(Understa	Understanding		Applying (Application):			
Taxonomy		knowledge): L_1	Comprehension): L_2 L_3						
Leveis		Analyzing (Analysis). I	Higher (raer thinking skill	S	Creating (Synthesis). I			
		r maryzing (rmarysis). L4	* aruaring	, (Lyanuanon). L5		Creating (Synthesis). L ₆			