Mode1 Question Paper -1 with effect from 2020-21(CBCS Scheme)

USN \square

Fifth Semester B.E. Degree Examination

Naval Architecture

TIME: 03 Hours
Max. Marks: 100

1. Answer any FIVE full questions, choosing at least ONE

Note: question from each MODULE.

	above the kee1. Determine the height of the centre of gravity of the ship above the keel.	
Module - 3		
Q. 5	```(a)Explain the following terms with neat diagrams: i) Equi11ibrium ii) Stable Equillibrium iii) Unstable Equilibrium iv) Neutral Equilibrium```	$\begin{aligned} & 12 \\ & \text { Marks } \end{aligned}$
	(bA vessel of constant triangular cross-section has a depth of 12 m and a breadth at the deck of 15 m . Calculate the draught at which the vessel will become unstable if the centre of gravity is 6.675 m above the keel.	08 Marks
OR		
Q. 6	(aExplain the conduction of inclining experiment and hence) derive for the height of centre of gravity above the keel.	$\begin{aligned} & 12 \\ & \text { Marks } \\ & \hline \end{aligned}$
	(bA ship of 6000 tonne displacement has its centre of gravity 5.9 m above the keel and transverse metacentre 6.8 m above the kee1. A rectangular double bottom tank 10.5 m long, 12 m wide and 1.2 m deep is now half-filled with sea water. Calculate the metacentric height.	08 Marks
Module - 4		
	(a Derive an expression for change in mean draught due to) change in density.	$\begin{aligned} & \hline 08 \\ & \text { Marks } \\ & \hline \end{aligned}$
Q. 7	(b A ship 130 m long displaces 14000 tonne when floating at draughts of 7.5 m forward and 8.10 m aft. $\mathrm{GM}_{\mathrm{L}} 125 \mathrm{~m}$, TPC 18 , LCF 3 m aft of midships. Calculate the final draughts when a mass of 180 tonne lying 40 m aft of midships is removed from the ship.	$\begin{aligned} & 12 \\ & \text { Marks } \end{aligned}$
OR		
Q. 8	(aWhat is residuary resistance? Explain 3 types of residuary resistance.	$\begin{aligned} & \hline 08 \\ & \text { Marks } \end{aligned}$
	$\begin{aligned} & \text { (b A } 6 \mathrm{~m} \text { model of a ship has a wetted surface area of } 8 \mathrm{~m}^{2} \text {. When towed } \\ & \text { at a speed of } 3 \text { knots in fresh water the total resistance is found } \\ & \text { to be } 38 \mathrm{~N} \text {. If the ship is } 130 \mathrm{~m} \text { long, calculate the effective } \\ & \text { power at the corresponding speed. } \end{aligned}$	$\begin{aligned} & 12 \\ & \text { Marks } \end{aligned}$
Module - 5		
Q. 9	(a Define the following terms related to propeller:) i) Pitch, ii) Theoretical Speed, iii) Apparent slip, iv) Wake, v) Real slip	$\begin{aligned} & 10 \\ & \text { Marks } \end{aligned}$
	(b Define propeller thrust. Obtain an expression for thrust.	$\begin{aligned} & \hline 05 \\ & \text { Marks } \end{aligned}$
	(CA ship travels at 14 knots when the propeller, 5 m pitch, turns at $105 \mathrm{rev} / \mathrm{min}$. If the wake fraction is 0.35 , calculate the apparent slip and speed of advance.	$\begin{aligned} & 05 \\ & \text { Marks } \end{aligned}$
OR		
Q. 10	(a Explain the relation between the various powers affecting) the propeller and ship efficiency.	$\begin{aligned} & 10 \\ & \text { Marks } \end{aligned}$
	$\text { b Derive an expression for angle of hee } 1 \text { considering the effect }$ of rudder force when the ship takes turn.	$\begin{aligned} & 05 \\ & \text { Marks } \end{aligned}$
	(cA ship with a metacentric height of 0.4 m has a speed of 21) C knots. The centre of gravity is 6.2 m above the keel while the centre of lateral resistance is 4 m above the kee1. The rudder is put hard over to port and the vessel turns in a circle 1100 m radius. Calculate the angle to which the ship will heel.	05 Marks

| Table showing the B1oom's Taxonomy Leve1, Course Outcome and | | | |
| :--- | :--- | :--- | :--- | :--- |
| Programme outcome | | | |

Taxonom y Levels	Remembering (know7edge):	Understanding Comprehension): \square_{2}	Applying (Application): \square_{3}
	Higher order thinking skills		
	Analyzing (Analysis):	valuating (Evaluation):	Creating (Synthesis):

Mode1 Question Paper -2 with effect from 2020-21(CBCS

 Scheme)USN

Fifth Semester B.E. Degree Examination Nava1 Architecture

TIME: 03 Hours
Max. Marks: 100
02. Answer any FIVE full questions, choosing at least ONE Note: question from each MODULE.

Module - 1																		
Q. 1		Define: a) Density Pressure, d) Centroi													c) Centre of			$\begin{array}{\|l\|} \hline 5 \\ \text { Marks } \\ \hline \end{array}$
	A rectangular double bottom tank is 20 m long, 12 m wide and 1.5 m deep, and is full of sea water having a density of (c $c^{1} .025$ tonne $/ \mathrm{m}^{3}$. Calculate the pressure in $\mathrm{kN} / \mathrm{m}^{3}$ and the load in MN on the top and bottom of the tank if the water is: (a) at the top of the tank (b) 10 m up the sounding pipe above the tank top.																	$\begin{array}{\|l\|} \hline 5 \\ \text { Marks } \\ \hline \\ 10 \\ \text { Marks } \\ \hline \end{array}$
OR																		
Q. 2	$)^{\text {(a }}$	Explain Simpson's First Rule in detail. The half ordinates of a waterplane 120 m long are as follows:																$\begin{array}{\|l\|} \hline 10 \\ \text { Marks } \\ \hline \end{array}$
																		$\begin{aligned} & 10 \\ & \text { Marks } \end{aligned}$
	$)^{(b}$	Section $\frac{1}{2}$ Ord (mtr)																
				3.5	5.3	6.8	8.0		8.5	8.5	8.5							
		Ca1culate: a) waterplane area b) distance of centroid from midships.																
Module - 2																		
	(a Explain with the help of a neat sketch i) Waterplane area coefficient, ii) Block Coefficient, iii) Midship Section Area Coefficient, iv) Prismatic Coefficient																	$\begin{aligned} & \hline 12 \\ & \text { Marks } \end{aligned}$
Q. 3	(b The length of a ship is 18 times the draught, while the breadth is 2.1 times the draught. At the load waterplane, the waterplane area coefficient is 0.83 and the difference between the TPC in sea water and the TPC in fresh water is 0.7 . Determine the length of the ship and the TPC in fresh water.																	$\begin{array}{\|l\|} \hline 08 \\ \text { Marks } \end{array}$
OR																		
	(adDefine TPC and obtain an expression for TPC.																	$\begin{aligned} & 07 \\ & \text { Marks } \end{aligned}$
Q. 4	$)^{(b}$	Explain the term 'centre of gravity'.																05 Marks

	(A ship of 10000 tonne displacement has a mass of 60 tonne (${ }^{\prime}$ lying on the deck. A derrick, whose head is 7.5 m above the center of gravity of the mass, is used to place the mass on the tank top 10.5 m below the deck. Calculate the shift in the vessel's center of gravity when the mass is: a) Just clear of the deck b) At the derrick head c) In its final position	08 Marks
Module - 3		
Q. 5	(a Explain how metacentric height and transverse metacentre can be determined using an inclining experiment.	$\begin{aligned} & 12 \\ & \text { Marks } \end{aligned}$
	(b A ship of 8000 tonne displacement has its centre of gravity 4.5 m above the kee1 and transverse metacentre 5.0 m above the keel when a rectangular tank 7.5 m long and 15 m wide contains sea water. A mass of 10 tonne is moved 12 m across the deck. Calculate the angle of heel: (a) if there is no free surface of water, (b) if the water does not completely fill the tank.	$\begin{aligned} & \text { Marks } \\ & \hline \end{aligned}$
OR		
Q. 6	(a) Explain the effect of tank divisions on free surface and derive the reduction in metacentric height for rectangular tank with: No division Mid length, transverse division 1 longitudinal centreline division 2 longitudinal centreline division	$\begin{aligned} & \text { Marks } \\ & \hline \end{aligned}$
	(bA vessel of 10000 tonne displacement has a second moment of area of waterplane about the centreline of 60000 m . The center of buoyancy is 2.75 m above the kee1. The following are the disposition of the masses on board the ship: 4000 tonne, 6.30 m above the kee1. 2000 tonne, 7.5 m above the kee1. 4000 tonne, 9.15 above the kee1. calculate the metacentric height.	$\begin{aligned} & 08 \\ & \text { Marks } \end{aligned}$
Module - 4		
	(a Derive an expression for change in trim due to change in density.	$\begin{aligned} & \hline 08 \\ & \text { Marks } \\ & \hline \end{aligned}$
Q. 7	(b A ship 150 m long has a draughts of 7.70 m forward and 8.25 m aft,. MCTI cm 250 tonne m, TPC 26 and LCF 1.8 m forward of midships. Calculate the new draughts after the following masses have been added: 50 tonne, 70 m aft of midships 170 tonne, 36 m aft of midships 100 tonne, 5 m aft of midships 130 tonne, 4 m forward of midships 40 tonne, 63 m forward of midships	$\begin{aligned} & 12 \\ & \text { Marks } \end{aligned}$
	OR	
Q. 8	(a Explain about the frictional resistance exerted by the water on the ship.	08 Marks
	(bThe frictional resistance of a ship in fresh water at $3 \mathrm{~m} / \mathrm{s}$ is $11 \mathrm{~N} / \mathrm{m}$. The ship has a wetted surface area of 2500 m and the frictional resistance is 72% of the total resistance and varies as speed. If the effective power is 1100 KW , calculate the speed of the ship.	$\begin{aligned} & \hline 07 \\ & \text { Marks } \end{aligned}$

(c\|A ship has a wetted surface area of $3200 \mathrm{~m}^{2}$. Calculate the power required to overcome frictional resistance at 17 knots if $n=1.825$ and $f=0.424$.			05 Marks
Module - 5			
Q. 9	$)^{\text {(a }}$	With the help of a neat diagram explain the relationship between the various speeds in a ship	10 Marks
	$)^{\text {(b }}$	Explain the phenomenon of cavitation and its effects on the ship's prope11ers	05 Marks
	$)^{(c}$	A propeller of 4.5 m pitch turns at $120 \mathrm{rev} / \mathrm{min}$ and drives the ship at 15.5 knots. If the wake fraction is 0.30 . Calculate i) Apparent slip, ii) Speed of Advance.	05 Marks
OR			
Q. 10) ${ }^{\text {a }}$	Explain the relation between the various powers affecting the propeller and ship efficiency.	$\begin{array}{\|l\|} \hline 09 \\ \text { Marks } \\ \hline \end{array}$
	$)^{\text {cb }}$	Derive an expression for angle of heet due to force on rudder.	$\begin{aligned} & \hline 05 \\ & \text { Marks } \end{aligned}$
	${ }_{5}^{(c \mid}$	A ship of 8000 tonne displacement has a rudder of area $18 \mathrm{~m}^{2}$. The centre of lateral resistance is 4 m above the keel while the centroid of the rudder is 2.35 m above the keel. The maximum rudder angle is 35°. Calculate the angle of heel due to the force on the rudder if the latter is put hard over to port when travelling at 21 knots with a metacentric height of 0.4 m .	$\begin{array}{\|l\|} \hline 06 \\ \text { Marks } \end{array}$

Bloom's Taxonom y Leve1s	ski11s		
	Remembering (knowledge): \square_{1}	Understanding Comprehension): \square_{2}	```Applying (Application): \|```
	Higher order thinking skills		
	Analyzing (Analysis): \square_{4}	valuating (Evaluation): \square_{5}	```Creating (Synthesis): ⿰氵 ```

