Model Question Paper -1 with effect from 2020-21(CBCS Scheme)

TIME: 03 Hours

Max. Marks: 100

01. Answer any **FIVE** full questions, choosing at least **ONE** Note: question from each **MODULE**.

Module – 1					
	<pre>(a Define: i) Aft Perpendicular, ii) Forward Perpendicular,) iii) Length between perpendicular</pre>	5 Marks			
	(b of sea water. Calculate the head of water above the tank top if the load due to water pressure on the tank top is 9.6 MN.	5 Marks			
Q.1	A peak bulkhead is in the form of a triangle, apex down, 6m wide at the top, 9m deep. The tank is filled with sea water. Calculate the load on the bulkhead and the position of the centre of pressure relative to the top of the bulkhead if the water is; a) at the top of the bulkhead b) 4m up the sounding pipe.	10 Marks			
	OR				
	(a Explain how simpson's rule can be used to determine area) of a plane.	10 Marks			
Q.2	The half ordinates of a waterplane 180m long are as follows: section AP 1 2 3 4 5 6 7 8 9 9 FP (b ord 0 5.08.010.512.513.513.512.511.07.53.01.00m Calculate: a) Waterplane Area. b) Distance of centroid from midships.	10 Marks			
	Modul o 2				
	MOUUIE = 2	10			
) coefficient, ii) Block Coefficient, iii) Midship Section Area Coefficient, iv) Prismatic Coefficient	Marks			
Q.3	(b) A ship 150 m long and 20.5 m beam floats at a draught of 8 m and displaces 19500 tonne. The TPC is 26.5 and midship section area coefficient 0.94. Calculate the block, prismatic and waterplane area coefficient.	08 Marks			
OR					
	(aExplain the following:) i) archimidies principle ii) displacement of the ship	07 Marks			
Q.4	(b Explain the effect of suspended mass on centre of gravity.	05 Marks			
	(c A ship of 8500 tonne displacement is composed of masses of 2000, 3000, 1000, 2000 and 500 tonne at positions 2, 5, 8, 10, and 14 m	08 Marks			

	above the keel. Determine the height of the centre of gravity of the ship above the keel.						
Module – 3							
Q.5	<pre>(a Explain the following terms with neat diagrams:) i) Equillibrium ii) Stable Equillibrium iii) Unstable Equilibrium iv) Neutral Equilibrium</pre>	12 Marks					
	(bA vessel of constant triangular cross-section has a depth of 12 m and a breadth at the deck of 15m. Calculate the draught at which the vessel will become unstable if the centre of gravity is 6.675 m above the keel.	08 Marks					
	OR						
0.6	(a Explain the conduction of inclining experiment and hence) derive for the height of centre of gravity above the keel.	12 Marks					
Q.0	(bA ship of 6000 tonne displacement has its centre of gravity 5.9 m above the keel and transverse metacentre 6.8 m above the keel. A rectangular double bottom tank 10.5 m long, 12 m wide and 1.2 m deep is now half-filled with sea water. Calculate the metacentric height.	08 Marks					
	Module – 4						
	 (a Derive an expression for change in mean draught due to) change in density. 	08 Marks					
Q.7	(b A ship 130m long displaces 14000 tonne when floating at draughts of 7.5m forward and 8.10 m aft. GM _L 125 m, TPC 18, LCF 3 m aft of midships. Calculate the final draughts when a mass of 180 tonne lying 40m aft of midships is removed from the ship.	12 Marks					
OR							
0.8	(aWhat is residuary resistance? Explain 3 types of residuary) resistance.	08 Marks					
	(b A 6 m model of a ship has a wetted surface area of 8 m ² . When towed at a speed of 3 knots in fresh water the total resistance is found to be 38 N. If the ship is 130 m long, calculate the effective power at the corresponding speed.						
	(a Define the following terms related to propeller:	10					
0.9) i) Pitch, ii) Theoretical Speed, iii) Apparent slip, iv) Wake, v) Real slip	Marks					
	(b) Define propeller thrust. Obtain an expression for thrust.	05 Marks					
	<pre>(CA ship travels at 14 knots when the propeller, 5 m pitch, turns at 105 rev/min. If the wake fraction is 0.35, calculate the apparent slip and speed of advance.</pre>	05 Marks					
	OR						
0 10	(a Explain the relation between the various powers affecting) the propeller and ship efficiency.	10 Marks					
Q.10	(D) Derive an expression for angle of heel considering the effect of rudder force when the ship takes turn.	05 Marks					
	(CA Ship with a metacentric height of 0.4 m has a speed of 21 knots. The centre of gravity is 6.2 m above the keel while the centre of lateral resistance is 4 m above the keel. The rudder is put hard over to port and the vessel turns in a circle 1100 m radius. Calculate the angle to which the ship will heel.	05 Marks					
1							

Та	Table showing the Bloom's Taxonomy Level, Course Outcome and Programme Outcome						
Ques [.]	tion	Bloom's Taxonomy Level attached	Course Outcom	Programme Outcome			
Q.1	(a	L1	co1, co2	P01, PS01			
	(b)	L3	CO1, CO2	PO2, PSO1			
) (C	L3	CO1, CO2	PO3. PSO1			
Q.2) (a	L2	CO1, CO2	P01, PS01			
	(b	L3	C02	PO4, PSO1			
Q.3) (a	L2	C03	P01, PS01			
	(b	L3	C03	PO3, PSO1			
Q.4) (a	L2	C01, C02	P01, PS01			
	(b	L2	C01, C02	P01, PS01			
) (C	L3	C02	P01, PS01			
Q.5) (a	L2	C02	P012, PS01			
	(b	L3	C02	P02, PS01			
Q.6) (a	L2	CO1, CO2, CO5	P01, PS01			
	(b)	L3	C02	PO2, PO3, PSO1			
Q.7	(a)	L2	C02	P01, PS01			
	(b)	L3	C02	PO3, PSO1			
Q.8	(a)	L2	C02	PO2, PSO1			
	(b)	L3	C02	PO2, PO3, PSO1			
Q.9) (a	L1	C04	PO1, PO12, PSO1			
	(b)	L2	C04	P01, PS01			
) (C	L3	C04	PO2, PSO1			
Q.10	(a)	L2	C04	P01, PS01			
	(b)	L2	co4, co5	PO2, PSO1			
	́(с)	L3	CO4	PO2, PO3, PSO1			
		l ower	order thinking	·			
Bloom's skills							

TaxonomRemembering(yknowledge): □1Levels		Understanding Comprehension): D ₂	Applying (Application):						
	Higher order thinking skills								
	Analyzing (Analysis): 🛛 4	Valuating (Evaluation): 🛛 5	Creating (Synthesis): 🛛 6						
			·						

Model Question Paper -2 with effect from 2020-21(CBCS Scheme)

Fifth Semester B.E. Degree Examination Naval Architecture

TIME: 03 Hours

Max. Marks: 100

Note:

02. Answer any **FIVE** full questions, choosing at least **ONE** question from each **MODULE**.

Module – 1																		
	(a	Define		a)	Dens	sity	′, k))	Rela	ativ	'e [Dens	sity	', C	:) (Cent	re of	5
	J Pressure, a) Centrola.										Marks							
	(\mathbf{p} A piece of aluminium has a mass of 300 gm and its volume is 42 cm ³ .) Marks						
	Δ rectangular double bottom tank is 20 m long 12 m wide and										Mains							
Q.1	1.5 m deep, and is full of sea water having a density of																	
	$(c_{1.025tonne/m^3})$. Calculate the pressure in kN/m ³ and the load										10							
	$\int \begin{bmatrix} 1n & MN & on the top and bottom of the tank if the water is: (a) at the top of the tank$										Marks							
	(a) at the top of the tank (b) 10 m up the sounding pipe above the tank top.																	
				•			-	OR										
	(a	Explai	n si	mpsc	on's	Fi	rst	Rul	e i	n de	etai	٦.						10
)	The hal	fo	- din-		of	2 4		rn]	<u></u>	120	 m 7	000	2 50		fo	11000	Marks
				uma	ites		av	vale	1 p i	ane	120		Ung					
		Section	AP	0.5	1	1.5	2	3	4	S	6	/	8	8.5	9	9.5	FP	
Q.2	~	1	1.2	3.5	5.3	6.8	8.0	8.3	8.5	8.5	8.5	8.4	8.2	7.9	6.2	3.5	0	10
	(b	Ord.																10 Marks
	,	(mtr)																Marks
	Calculate: a) waterplane area																	
	b) distance of centroid from midships.																	
	Module – 2																	
	(a	Explai	n w	ith [.]	the	he1	ро	f a	ne	at	sket	tch	i)	Wat	erp	lane	e area	12
)	coeffi	cier	nt,	ii)	Blo	ock	COe	effi	cie	nt,	ii	i)	Mid	shi	p Se	ection	Marks
	<u>(</u>]	The le	nat	$\frac{101}{100}$	$\frac{n\tau}{a}$	<u> 1 </u>)	<u>s 1</u>	<u>ati</u> 8 †	<u>c cc</u>	$\frac{1}{5}$	he	<u>ent</u> dra	uah	+ 1	whi1	e the	08
Q.3	(D)	breadt	h i	s 2.	1 t	imes	f th	ie d	rau	ght	. A1	t tł	1e	loac	l wa	ter	plane,	Marks
	-	the wa	terp	olane	ar	ea	coe	ffic	ien	it i	s 0	.83	aņo	d th	ne d	liff	erence	
		betwee	n tr	ne TF	2C 1 2 + h	n s	ea I	wate ⊧h	era	ind bo	the	TP(nr C Danat	ז tr -ho	esh TPC	wat	ter is froch	
		water.	etei		: CH	er	eng			.ne	5111	μαι	iu i	LIIC	TFC		11631	
		1						OR										
	(a	Define	ТРС	and	obt	ain	an	exp	res	sio	n fo	or T	PC.					07
)																	Marks
0 1	(b	Explai	n th	ne te	rm	'cer	ntre	e of	gr	avit	:у'.							05
ų.4)																	Marks

	<pre>(c A ship of 10000 tonne displacement has a mass of 60 tonne lying on the deck. A derrick, whose head is 7.5 m above the center of gravity of the mass, is used to place the mass on the tank top 10.5 m below the deck. Calculate the shift in the vessel's center of gravity when the mass is: a) Just clear of the deck b) At the derrick head c) In its final position</pre>	08 Marks
	Module – 3	
Q.5	(a Explain how metacentric height and transverse metacentre) can be determined using an inclining experiment.	12 Marks
	(b A ship of 8000 tonne displacement has its centre of gravity 4.5 m above the keel and transverse metacentre 5.0 m above the keel when a rectangular tank 7.5 m long and 15 m wide contains sea water. A mass of 10 tonne is moved 12 m across the deck. Calculate the angle of heel: (a) if there is no free surface of water, (b) if the water does not completely fill the tank.	08 Marks
	OR	
Q.6	(a Explain the effect of tank divisions on free surface and) derive the reduction in metacentric height for rectangular tank with: No division Mid length, transverse division 1 longitudinal centreline division 2 longitudinal centreline division	12 Marks
	<pre>(b A vessel of 10000 tonne displacement has a second moment of) area of waterplane about the centreline of 60000m. The center of buoyancy is 2.75m above the keel. The following are the disposition of the masses on board the ship: 4000 tonne, 6.30m above the keel. 2000 tonne, 7.5m above the keel. 4000 tonne, 9.15 above the keel. Calculate the metacentric height. Module - 4</pre>	08 Marks
	(a Derive an expression for change in trim due to change in	08
Q.7	<pre>) density. (b A ship 150 m long has a draughts of 7.70 m forward and 8.25 m aft,. MCTI cm 250 tonne m, TPC 26 and LCF 1.8 m forward of midships. Calculate the new draughts after the following masses have been added: 50 tonne, 70 m aft of midships 170 tonne, 36 m aft of midships 100 tonne, 5m aft of midships 130 tonne, 4 m forward of midships</pre>	Marks 12 Marks
	40 tonne, 63 m forward of midships	
Q.8	OR (a Explain about the frictional resistance exerted by the water) on the ship.	08 Marks
	(b The frictional resistance of a ship in fresh water at 3m/s is 11N/m. The ship has a wetted surface area of 2500m and the frictional resistance is 72% of the total resistance and varies as speed. If the effective power is 1100KW, calculate the speed of the ship.	07 Marks

(c A ship has a wetted surface area of 3200 m^2 . Calculate the power 05 required to overcome frictional resistance at 17 knots if n = 1.825 Marks and f = 0.424.

	-	and $T = 0.424$.						
		Module – 5						
	(a with the help of a neat diagram explain the relationship) between the various speeds in a ship							
Q.9	2.9 (b) Explain the phenomenon of cavitation and its effects on the ship's propellers							
	(c)	A propeller of 4.5m pitch turns at 120rev/min and drives the ship at 15.5 knots. If the wake fraction is 0.30. Calculate i) Apparent Slip, ii) Speed of Advance.	05 Marks					
		OR						
	(a)	Explain the relation between the various powers affecting the propeller and ship efficiency.	09 Marks					
Q.10	(b)	Derive an expression for angle of heel due to force on rudder.	05 Marks					
	(c)	A ship of 8000 tonne displacement has a rudder of area 18m ² . The centre of lateral resistance is 4 m above the keel while the centroid of the rudder is 2.35 m above the keel. The maximum rudder angle is 35°. Calculate the angle of heel due to the force on the rudder if the latter is put hard over to port when travelling at 21 knots with a metacentric height of 0.4 m.	06 Marks					

Та	ble	showing the Bloom's Tax Prog	onomy Level, ramme Outcome	Course Outcome and				
Ques	tion	Bloom's Taxonomy Level attached	Course Outcom e	Programme Outcome				
Q.1	(a	L1	C01	P01, PS01				
	(b	L3	C02	P02, S01				
) (C	L3	C02	PO3, PSO1				
Q.2) (a	L2	C01	P01,PS01				
	(b	L3	C02	PO3, PO4, PSO1				
Q.3) (a	L2	СО3	PO1, PSO1				
	(b)	L3	CO2, CO3	PO2, PO3, PSO1				
Q.4) (a	L2	C02	P01, PS01				
	(b	L2	C01	P01, PS01				
) (C	L3	CO1, CO5	PO2, PSO1				
Q.5) (a	L3	CO1, CO2	P01, P03, PS01				
	(b)	L3	C02	PO3, PSO1				
Q.6) (a	L2	CO1, CO2	PO3, PSO1				
	(b)	L3	C02	PO3, PSO1				
Q.7	(a)	L2	CO1, CO2	P01, PS01				
	(b)	L3	C02	PO2, PSO1				
Q.8	(a)	L2	CO1, CO2	P01, PS01				
	(b)	L3	CO1, CO2	PO3, PSO1				
	(c)	L3	CO1, CO2	PO3, PSO1				
Q.9	(a)	L2	CO1, CO4	P01, PS01				
	(b)	L2	CO1, CO4, CO5	PO2, PSO1				
	(c)	L3	CO1, CO4	PO2, PSO1				
Q.10	(a)	L2	CO1, CO4	P01, PS01				
	(b)	L2	CO1, CO4, CO5	P01, PS01				
	(c)	L3	CO1, CO4, CO5	PO3, PSO1				
Lower order thinking								

Bloom's	skills							
Taxonom	Remembering(Understanding	Applying					
y Lovols	knowledge): \Box_1	Comprehension): \square_2	(Application):					
LEVEIS			□3					
	thinking skills							
	Analyzing	Valuating	Creating					
	(Analysis): 🗛	(Evaluation): 🛛 5	(Synthesis): 🛛 6					

