Model Question Paper -1 with effect from 2020-21(CBCS Scheme)

Fifth Semester B.E. Degree Examination DESIGN OF MACHINE ELEMENTS-I

TIME: 03 Hours

Max. Marks: 100

01. Answer any **FIVE** full questions, choosing at least **ONE** Note: question from each **MODULE**. 02. Use of design data hand book is permitted.

03. Any missing data may be suitably assumed.

E=200Gpa.

OR					
	(a) Define endurance limit and explain the factors affecting it.	10			
Q.4	(b) A steel shaft is subjected to a bending moment varies from 120Nm to 220Nm and transmits 15kw at 200rpm. The torque varies over a range of ± 30%. The shaft is made of steel whose yield stess=450N/mm ² and endurance stress = 350 N/mm ² . Surface coefficient factor=0.9, size factor=1.2, factor of safety=4 and stress concentration factor=1.96. Determine the diameter of the shaft for infinite life.	10			
	Module – 3				
Q.5	A power transmission shaft 1200mm long is supported at its extreme ends. The shaft receives a power of 50kW through a gear drive located 400mm to the right of the left end of the shaft at a rated speed of 500rpm. PCD of gear is 200mm, pressure angle 20° and weight 500N. This gear receives power from another gear directly behind. This power is delivered through a belt drive located at a distance of 400mm to the left of the right support. The belt pulley has a pitch diameter of 300mm and weighs 800N. The belt moving on the pulley is directed towards the observer below the horizontal and inclined at 45° to it. The ratio of belt tensions is 3. Selecting carbon steel C40 and factor of safety is 3. Design a solid circular shaft considering the loading with minor shocks.	20			
	OR				
Q.6	(a) Design a square key for a gear shaft of diameter 30mm. 30kw power at 1000 rpm is transmitted from the shaft to the gear. The yield strength of key material in tension is 400MPa and the factor of safety is 3. The yield strength in compression can be assumed to be equal to the yield strength in tension. Determine the dimensions of the key.	10			
	(b) Design a cast iron flange coupling (protected type) to connect two shafts and transmit torque of 500 N-m. Permissible shear stress for shaft, bolt and key material is 50MPa. Permissible crushing stress for bolt and key material is 150MPa. Permissible shear stress for C. I. is 8MPa.	10			
	Module – 4				
Q.7	Design a longitudinal joint for a boiler of inner diameter 1.5m. The steam pressure in the boiler is 3Mpa. The longitudinal joint is triple riveted double cover plates butt joint of unequal width. The pitch in the outer row is twice the pitch of rivets in the inner rows. The efficiency of the joints is 82%. Assume the rivets in double shear are 1.875 times stronger than in single shear. The allowable stresses in shear and crushing of rivets are 60MPa and 120MPa respectively. Tensile stress for material of plate= 80MPa.	20			
	OR				

Table showing the Bloom's Taxonomy Level, Course Outcome and Programme Outcome						
Question		Bloom's Taxonomy Level attached	Co Ou e	ourse Jtcom	Programme Outcome	
Q.1	(a	L1		C01	P01	
) (b)	L1		C02	PO1	
) (c	L2 L3		C02	P02	
Q.2	(a	L2		CO3, CO4	P01	
) (b	L3		co3, co4	P01, P02	
Q.3) (a	L3		C03	P01	
) (b	L3		со3	P01, P02	
Q.4) (a	L3		C03	PO1	
	(b	L3		C03	P01, P02	
Q.5		L3 L4		C03	PO1, PO2, PO3, PO12	
Q.6	(a	L3 1 4		C03	P01, P02, P03, P012	
	(b)	L3 L4		C03	PO1, PO2, PO3	
Q.7		L3 L4		C05	P01, P02, P03	
Q.8		L3 L4		C05	PO1, PO2, PO3, PO12	
Q.9	(a)	L3 L4		CO5, CO6	P01, P02, P03	
	(b	L3		CO5, CO6	P01, P02, P03, P012	
Q.10) (a	L2		C05	P01	
) (b	L3		CO5, CO6	P01, P02, P03, P012	
)	L4				
Lower order thinking						
Taxonom Y Levels		Remembering(Uknowledge):01 C	SKITISUnderstandingApplyingComprehension):12Comprehension):12			
	F		Highe thinki	er order na skills	C	
		Analyzing V (Analysis): U	aluating	on). D-	Creating (Synthesis): De	

Model Question Paper -2 with effect from 2020-21(CBCS Scheme)

USN

Fifth Semester B.E. Degree Examination DESIGN OF MACHINE ELEMENTS-I

TIME: 03 Hours

Max. Marks: 100

04. Answer any FIVE full questions, choosing at least ONE question from each MODULE. 05. Use of design data hand book is permitted. 06. Any missing data may be suitably assumed. Note:

		Module – 1				
	(a)	The stresses acting at a point in structural member are, $\sigma_x = 140 \text{ N/mm}^2$, $\sigma_y = 80 \text{ N/mm}^2$, $\tau_{xy} = 40 \text{ N/mm}^2$ using Mohr's circle determine the Principal stresses and maximum shear stress.	10			
Q.1		A circular shaft of diameter 50mm fixed at one end is subjected to an axial tensile load of 10kN and torque of 300N-m. Determine the principal stresses and maximum shear stress.				
	(b)	$A \qquad \qquad M_t = 300 \text{ N-m}$ $\phi = 50 \text{ mm} \qquad \qquad 10 \text{ kN}$ $B \qquad \qquad Fig. Q.1$	10			
		(b)				
		UK What is stress concentration? Explain with neat sketches				
	(a)	the methods of reducing stress concentration.	10			
Q.2	(b)	The state of stresses at a point in a body are $\sigma_x = 100 \text{ N/mm}^2$, $\sigma_y = 70 \text{ N/mm}^2$ and $\tau_{xy} = 60 \text{ N/mm}^2$. The yield stress of material is 300 MPa. Find the factor of safety by, (i) Maximum shear stress theory (ii) Distortion energy theory	10			
		Module - 2				
	(a)	Derive an expression for the stress induced in a member subjected to axial impact.	08			
Q.3	(b)	A 500N weight dropped through a height of 25 mm impacts the centre of a 300 mm long simply supported steel square beam. If the maximum allowable bending stress is 100 MPa, find the dimension of side of the beam and maximum deflection. Neglect inertia effect. Take E= 200 GPa.	12			
OR						
Q.4	(a)	Derive Soderberg's relation for a member subjected to fatigue loading.	06			
	(b)	A round rod of diameter 1.2d is reduced to a diameter d with a fillet radius of 0.1d. This rod is to sustain a twisting moment that fluctuates between +2.5kN-m and 1.5kN- m together with a bending moment that fluctuates between +1kN-m and -1kN-m. the rod is made of carbon steel 40C8. Determine a suitable value for d.	14			

Module – 3					
Q.5	A steel shaft 800 mm long supported between bearings has a cast iron pulley of 600 mm diameter weighing 750N overhanging the right bearing by 150mm. This pulley receives 25kw at 1000 rpm by a belt inclined at 60° to the horizontal (inclined upward). The power from the shaft is transmitted through a 14.5° spur pinion of module 5mm having 40 teeth to a spur gear mounted directly above the pinion. The pinion is keyed to the shaft at a distance of 200 mm to the right of left bearing. Taking the ratio of belt tension as 3:1, ultimate stress and yield stress for material of shaft as 600 MPa and 300 MPa respectively, determine the shaft diameter. Use $K_b = 2$ and $K_t = 1.5$.				
Q.6	(a)	Determine the length of the key required in terms of shaft diameter taking width of key $b = d/4$ and thickness of key $h=(3/16)d$, If a shaft and key are made of same material.	06		
	(b) Design a pin type flexible coupling to transmit 20kW at 600rpm. Assume C40 as shaft, bolt (pin) and key material with allowable yield stress of 330MPa and allowable ultimate stress for hub material is 125 MPa.				
			20		
Q.7		Determine the diameter of the rivets for the eccentrically loaded riveted joint shown in Fig. Q.7, permissible shear stress for 60 MPa. $\frac{1}{1 + \frac{1}{1 + $	20		
		OR			
Q.8	(a)	A solid circular shaft of diameter 25mm is welded to a support by means of fillet weld as shown in Fig.Q. 8(a). Determine the leg dimensions of the weld if the permissible shear stress is 80 MPa.	12		
		¢25			

Fig.Q.

Q.8	(b)	Two plates are joined by means of fillet weld as shown in Fig. Q.8(b). The leg dimension of the weld is 12mm and the permissible shear at throat cross section is 80MPa. Determine the length of each weld.	08
		Module – 5	
Q.9	Q.9 (a) Design a knuckle joint to connect two mild steel rods subjected to an axial pull of 120kN. The allowable stresses for rods and pin are 120 MPa, 140 MPa and 60 MPa in tension, crushing and shear respectively. The bending of pin is prevented by selection of proper fit.		
	(b)	A cylinder head of a steam engine is subjected to a pressure of 1MPa. It is held in position by means of 12 bolts. Each bolt is subjected to an initial tension of 5kN. A soft copper gasket is used to make the joint leak proof. Effective diameter of the cylinder is 300mm. Find the size of bolts so that the stress in the bolt is not to exceed 120MPa.	10
	1	OR	
Q.10		A screw jack is to lift a load of 100kN through a height of 500mm, ultimate strength of screw material in tension and compression is 250 MPa and in shear 120 MPa. The material for the nut is phosphor bronze for which the ultimate strength is 100 MPa in tension, 80 MPa in compression and 60 MPa in shear. The bearing pressure between the nut and the screw is not to exceed 20MPa. Design the screw and nut and check for stresses. Take FOS=2,	20

			Prog	rainine outcom	e	
Question		Bloom's Taxonomy Level attached		Course Outcom e	Programme Outcome	
Q.1	(a	L2		C01	P01	
	(b	L2		C02	P01	
Q.2) (a	L2		CO3, CO4	P01	
	(b	L3		CO3, CO4	P01, P02	
Q.3) (a	L3		C03	PO1	
) (b	L3		C03	P01, P02	
Q.4) (a	L4 L3		C03	PO1	
) (b	L3		C03	P01, P02	
Q.5		L4 L3 L4		C03	P01, P02, P03, P012	
Q.6	(a)	L3 L4		C03	P01, P02, P03, P012	
	(b)	L3 L4		C03	PO1, PO2, PO3	
Q.7		L3 L4		C05	PO1, PO2, PO3	
Q.8	(a)	L3 L4		C05	P01, P02, P03, P012	
	(b)					
Q.9	(a	L3 L4		CO5, CO6	P01, P02, P03	
	(b)	L3 L4		CO5, CO6	PO1, PO2, PO3, PO12	
Q.10	-	L3 L4		CO5, CO6	P01, P02, P03, P012	
		•	Lower	order thinkind]	
Bloom Taxond Y Levels	's om 5	Remembering(knowledge):□1	skills Understanding Comprehension): 🛛 2		Applying (Application):	
		Higher order thinking skills				
		Analyzing (Analysis): □₄	Valuati (Evalua	ng tion): □₅	Creating (Synthesis): 🛛 🕫	

18ME52

