Model Question Paper -1 with effect from 2020-21(CBCS Scheme)

USN

Fifth Semester B.E. Degree Examination

CONTROL SYSTEMS

TIME: 03 Hours

Max. Marks: 100

Note: 01. Answer any **FIVE** full questions, choosing at least **ONE** question from each **MODULE**.

		Module – 1					
	(a)	Define control system? List the merits and demerits of open loop and closed loop control systems					
	(b)	What is analogous system? Write the electrical analogous quantities for the mechanical quantities using force-voltage analogy	04				
Q.1 (c) For the rotational mechanical system shown in Fig. 1(c). (i) Write the differential equations describing the system (ii) Draw the force-voltage analogous electrical circuit after writing corresponding electrical equations $\int_{R_2} \int_{R_1} \int_{R_2} \int_{R_1} \int_{R_1} \int_{R_2} \int_{R_1} \int_{R_1} \int_{R_2} \int_{R_1} \int_{R_1} \int_{R_2} \int_{R_1} \int_{R_1} \int_{R_1} \int_{R_2} \int_{R_1} \int_{R_1}$							
Q.2	(a)	For the circuit shown in Fig.2 (a), determine transfer function I(s)/V _i (s), where K is the gain of an ideal amplifier. R_{1} R_{2} K_{1} K_{1} K_{2} K_{2} K_{1} K_{2} K_{1} K_{2} K_{2} K_{1} K_{2} K_{2} K_{1} K_{1} K_{2} K_{1} K_{2} K_{1} K_{2} K_{1} K_{1} K_{2} K_{2} K_{1} K_{2} K_{2} K_{1} K_{2} K_{2} K_{1} K_{2} K_{2} K_{2} K_{2} K_{1} K_{2} $K_$	08				
	(b)	Demonstrate how to perform the following in connection with block diagram reduction rules: (i) Moving a summing point ahead of a block (ii) Elimination of a feedback loop	04				
	(c)	For the block diagram of a control system as shown in Fig.2(c), conclude C(s)/R(s) by using block diagram reduction technique.	08				

	(h)	The open loop transfer function of a unity feedback control system is	10					
	(0)	$G(s)H(s) = \frac{K}{2}$						
		$(s+2)(s+4)(s^2+6s+25)$. Estimate the range of K for stability. What is						
		the value of K which gives sustained oscillations? What is the oscillation frequency?						
	(c)	For a negative feedback control system , the closed loop transfer function is	04					
		C(s) K						
		$\frac{R(s)}{(s^4 + 6s^3 + 30s^2 + 60s + K)}$						
		Evaluate the range of K for stability						
		OR						
	(a)	Define breakaway point and break-in point. Discuss the general predictions about the existence of the same.	08					
0.6	(b)	Show the complete root locus diagram for the system whose open loop transfer	12					
C C		function is $C(s)H(s) = \frac{K}{1-s}$						
		$s(s^2 + 2s + 2)$						
		Modulo 4						
	(a)	$\frac{1}{1}$	08					
	(a)	$C(c) = 6\Lambda$	08					
		closed loop transfer function is $\frac{C(3)}{T(3)} = \frac{04}{12}$						
Q.7		$R(s) = (s^2 + 10s + 64)$						
	(b)	Elaborate the correlation between time domain and frequency domain specifications	06					
		Illustrate the procedure to evaluate gain margin and phase margin from Bode plots.	06					
	(c)							
		OR						
	(a)	State and explain the principle of argument of Nyquist Stability criterion	10					
Q.8	(b)	The open loop transfer function of a unity feedback control system is	10					
		$G(s) = \frac{1}{1}$						
		s(1+s)(1+2s). Sketch the Polar plot and determine gain margin and phase						
margin								
		Module – 5						
	(a)	Mention the advantages of state variable approach	06					
		Construct the state model for the system represented by a transfer function	04					
09	(b)	C(s) 10						
Q.,		$\frac{1}{R(s)} = \frac{1}{s(s+2)(s+3)}$						
	(\mathbf{o})	Define state transition matrix. The state model of the system is given by	10					
			10					
		$\begin{vmatrix} x_1 \\ -5 & -1 \end{vmatrix} \begin{bmatrix} x_1 \\ 2 \end{bmatrix} \begin{bmatrix} x_1 \end{bmatrix}$						
		$\begin{vmatrix} \mathbf{r} \\ \mathbf{r} \end{vmatrix} = \begin{vmatrix} 3 \\ -1 \end{vmatrix} \begin{vmatrix} x_2 \\ 5 \end{vmatrix} = \begin{vmatrix} 5 \\ 1 \end{vmatrix} \begin{vmatrix} 1 \\ 2 \end{vmatrix} \begin{vmatrix} x_2 \end{vmatrix}$						
		Find the transfer function						
	1							
	(a)	Obtain the appropriate state model for a system represented by electric circuit	08					
	(<i>a</i>)	shown in Fig.10 (a).	00					
0.10		R R						
Q.10		$+$ $\wedge \wedge \wedge \wedge$ $+$						
		u(t) c T c T y(t)						
		YY						
	Fig.10(a)							

(b)	The state equation of a system is given by	12
	$\begin{bmatrix} \cdot \\ x_1 \\ \cdot \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -6 & -5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$	
	Estimate (i) the state transition matrix	
	(ii) $x_1(t)$ and $x_2(t)$ for a unit step input	
	Assume initial conditions $x_1(0)=1$ and $x_2(0)=0$.	

Ta	ble s	howing the Bloom's Tax	onomy L Outc	evel, Course Out ome	come and Programme
Question		Bloom's Taxonomy L attached	level	Course Outcome	Programme Outcome
0.1	(a)	L2		1	
	(b)	L2		1	
	(c)	L3		1	
0.2	(a)	L4		1	
C	(b)	L2		2	
	(c)	L4		2	
Q.3	(a)	L2		2	
C	(b)	L3		2	
Q.4	(a)	L2		3	
C	(b)	L4		3	
Q.5	(a)	L2		5	
-	(b)	L4		5	
	(c)	L3		5	
Q.6	(a)	L2		5	
-	(b)	L2		5	
Q.7	(a)	L4		5	
-	(b)	L2		5	
	(c)	L2		5	
Q.8	(a)	L2		5	
	(b)	L5		5	
Q.9	(a)	L2		4	
	(b)	L3		4	
	(c)	L4		4	
Q.10	(a)	L3		4	
-	(b)	L5		4	
			Lower	order thinking skill	
Bloom ⁹	's	Remembering(Understa	nding	Applying (Application):
Taxono	omy	knowledge): L_1	Compreh	ension): L_2	L_3
Levels			ls		
		Analyzing (Analysis): L_4	Valuating	g (Evaluation): L_5	Creating (Synthesis): L_6

Model Question Paper -2 with effect from 2020-21(CBCS Scheme)

USN

Fifth Semester B.E. Degree Examination

CONTROL SYSTEMS

TIME: 03 Hours

Max. Marks: 100

Note: 01. Answer any **FIVE** full questions, choosing at least **ONE** question from each **MODULE**.

		Module – 2					
	(a) State and explain Mason's gain formula. Determine the transfer function $C(s)/R(s)$ for 12 the signal flow graph shown in the Fig.2(b), using the same.						
Q.3	3 $R(5)$ H_2 H_1 $R(5)$ H_2 H_1 G_3 G_4 G_7 G_8 G_5 G_{76} G_{77} G_{78} H_4						
	(b)	Fig.2(b) Draw the signal flow graph for the following equations and obtain overall transfer 08 function using Mason's Gain formula: X1=R-x6; x2=x1-x4H2; x3=G1x2; x4=G2x3;					
		$X_5 = X_4 - H_1 X_6 + G_4 X_3; X_6 = X_5 G_3; C = X_6$					
	(a)	VK	06				
	(a)	mathematically? Represent their Laplace transformations?	00				
Q.4	(b)	Define the steady state error constants. The open loop transfer function of a unity feedback control system is $G(s) = \frac{100}{s^2(s+4)(s+12)}$. Calculate(i)Static error constants	07				
		and (ii) the steady state error for the input $r(t)=2t^2+5t+10$					
	(c)	A negative feedback control system has a forward path transfer function, $G(s)=K/s(s+1)$, and feedback path transfer function, $H(s)=1+as$. If this system is to have a peak time of 0.5 seconds, a 10% overshoot for a unit step input, determine K and a.	07				
	-	Module – 3					
Q.5	(a)	Define (i) Absolute stability (ii)Relative stability	04				
	(b)	Depict the transfer function, time response and location of roots in the s-plane for stability analysis.					
	(c)	c) Test the stability of a system, $s^6+2s^5+8s^4+12s^3+20s^2+16s+16=0$. Find the number of roots of this equation lie on right half of the s-plane, on left half of the s-plane and on the imaginary axis.					

		OR				
	(a)	Clarify the magnitude and angle conditions as applied to root locus method				
	(b)	Mention the merits of Root locus technique	04			
Q.6	(c)	Sketch the root locus plot for a negative feedback control system whose				
		open loop transfer function, $G(s)H(s)=K/s(s+3)(s^2+2s+2)$ for all values of K ranging from 0 to ∞ . Also find the value of K for a damping ratio of 0.5				
		Module – 4				
	(a)	Interpret the Correlation between the time and frequency domain specifications	06			
	(b)	Deliberate the nature of Bode plot of (i) Pole at the origin (ii) Simple pole	06			
Q.7	(c)	Construct the Bode's diagram for a system having open loop transfer function as $G(s)H(s) = 10(1+0.1s)/s(1+0.5s)(1+0.2s)$. From the diagram, find gain cross over frequency, phase cross over frequency, gain margin and phase margin. Comment on its stability	08			
OR						
		-				

	(a)	Given $G(s)H(s) = \frac{12}{r(s+1)(s+2)}$. Draw the polar plot and hence determine if system is	10		
Q.8		stable and its gain margin and phase margin			
	(b)	State and explain the principle of argument of Nyquist Stability criterion	10		
		Module – 5			
	(a)	Define (i) State (ii) State variable			
Q.9	(b) Relate the state model for the system described by the differential equation as $4\frac{d^{3}}{dt^{3}}y(t) + 2\frac{d^{2}}{dt^{2}}y(t) + \frac{d}{dt}y(t) + 2y(t) = 5u(t)$				
	(c)	Evaluate the state transition matrix for the system: y+3y+2y = 0. Also find the inverse of the state transition matrix.	10		
		OR			
	(a)	Develop the mathematical procedure to find the solution of the state equation	04		
0.10	(b)	Obtain the state model and output model of the electrical system as shown in Fig.10(b)	06		
Q.10		$V(t) \stackrel{R}{\longrightarrow} (t) \qquad C \stackrel{L}{\longrightarrow} V_{c}(t)$			
		Fig.10(b)			
	(c)	The state model of the system is given by $\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 2 \\ -3 & -5 \end{bmatrix} \begin{bmatrix} x1 \\ x2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{-t} ; y = \begin{bmatrix} 1 & 3 \end{bmatrix} x \text{ and } x[0] = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \text{ Solve for y(t)}$	10		

Ta	ble s	howing the Bloom's Tax	konomy L Outc	evel, Course Outc ome	ome and Programme
Question		Bloom's Taxonomy L attached	.evel	evel Course Outcome	Programme Outcome
0.1	(a)	L2		1	
	(b)	L4		1	
Q.2	(a)	L2		2	
-	(b)	L5		2	
Q.3	(a)	L4		2	
-	(b)	L5		2	
Q.4	(a)	L2		3	
	(b)	L3		3	
	(c)	L4		3	
Q.5	(a)	L1		5	
	(b)	L2		5	
	(c)	L4		5	
Q.6	(a)	L2		5	
	(b)	L2		5	
	(c)	L5		5	
Q.7	(a)	L2		5	
	(b)	L3		5	
	(c)	L5		5	
Q.8	(a)	L4		5	
	(b)	L2		5	
Q.9	(a)	L1		4	
	(b)	L3		4	
	(c)	L4		4	
Q.10	(a)	L2		4	
	(b)	L3		4	
	(c)	L4		4	
	ļ		Lower o	order thinking skills	S
Bloom's		Remembering(Understanding			Applying (Application):
Levels	шу	KIIOwieuge).L1	Higher	order thinking skill	S
		Analyzing (Analysis): L_4	Creating (Synthesis): L_6		

~{&&}}}