Model Question Paper -1 with effect from 2020-21(CBCS Scheme)

USN

Fifth Semester B.E. Degree Examination

Rock Mechanics

TIME: 03 Hours

Max. Marks: 100

Note: 01. Answer any **FIVE** full questions, choosing at least **ONE** question from each **MODULE**.

Module – 1							
	(a)	Explain the scope and importance of Rock Mechanics in mining.	6 marks				
Q.1	(b)	Describe the development and application of rock mechanics in mining.	6 marks				
	(c)	Explain discontinuities and how it affects the mining operations.	8 marks				
OR							
Q.2	(a)	Explain mapping and hemispherical projection of discontinuities.	10 marks				
	(b)	Explain in detail Barton's shear strength of joints.	10 marks				
Module – 2							
	(a)	Explain with an example on the analysis of stress in a two dimensional plane.					
Q.3	(b)	Explain Mohr's circle of stress and its significance.	10 marks				
OR							
Q.4	(a)	Illustrate stress-strain relationship of different rocks.					
	(b)	Illustrate the elasto-plastic behavior of different rocks	10 marks				
Module – 3							
Q.5	(a)	Explain with diagrams the determination of uni-axial compressive strength of a rock sample in laboratory.					
	(b)	Explain abrasivity of rock and its determination in laboratory.	10 Marks				
OR							
Q.6	(a)	Explain Creep deformation and its strength behavior over time with a neat sketch.					
	(b)	Explain creep test and its rheological models with neat diagrams.	10 marks				
Module – 4							
Q.7	(a)	Explain how to determine in-situ shear strength of rock mass.	10 marks				
	(b)	Explain how to determine in-situ bearing strength of rock mass.	10 marks				
OR							
	(a)	Explain Plate loading test with a neat sketch.	10 marks				
Q.8	(b)	Explain Bore hole jack test with a neat sketch	10 marks				
Module – 5							
Q.9	(a)	Explain the important elastic constants of rocks with neat sketches.	10 marks				
	(b)	Explain how static elastic constants of a rock is determined.	10 marks				
OR							
Q.10	(a)	Explain Coulomb failure criteria for rock and rock mass.	10 marks				
	(b)	Explain Griffith failure criteria for rock and rock mass.	10 marks				

Table showing the Bloom's Taxonomy Level, Course Outcome and Programme Outcome							
Question		Bloom's Taxonomy Level attached	Course Outcome	Programme Outcome			
Q.1	(a)	2	CO1	Engineering Knowledge			
	(b)	2	CO1	Engineering Knowledge			
	(c)	2	CO1	Problem Analysis			
Q.2	(a)	2	CO1	Problem Analysis			
-	(b)	2	CO1	Problem Analysis			
Q.3	(a)	2	CO2	Engineering Knowledge			
-	(b)	2	CO2	Engineering Knowledge			
Q.4	(a)	2	CO2	Engineering Knowledge			
-	(b)	2	CO2	Problem Analysis			
Q.5	(a)	2	CO3	Problem Analysis			
	(b)	2	CO3	Problem Analysis			
Q.6	(a)	2	CO3	Engineering Knowledge			
-	(b)	2	CO3	Design/Development of solutions			
Q.7	(a)	2	CO4	Engineering Knowledge			
	(b)	2	CO4	Engineering Knowledge			
Q.8	(a)	2	CO4	Problem Analysis			
-	(b)	2	CO4	Problem Analysis			
Q.9	(a)	2	CO5	Engineering Knowledge			
	(b)	2	CO5	Engineering Knowledge			
Q.10	(a)	2	CO5	Engineering Knowledge			
-	(b)	2	CO5	Engineering Knowledge			
Lower order thinking skills							
Bloom's		Remembering(Understanding	Applying (Application):			
1 axonomy Levels		knowledge): L_1 Comprehension): L_2 L_3 Higher order thinking skills					
		Analyzing (Analysis): L_4 Valuating (Evaluation): L_5 Creating (Synthesis): L_6					
			6				

Estator