## Model Question Paper-I/II with effect from 2021 (CBCS Scheme)

USN

# First Semester BE Degree Examination

Subject Title - Basic Electrical Engineering

## TIME: 03 Hours

### Max. Marks: 100

Note: Answer any **FIVE** full questions, choosing at least **ONE** question from each **MODULE**.

|                               | Module -1                                                                         |                                                                                                        |   |  |  |  |  |
|-------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---|--|--|--|--|
| Q.01                          | а                                                                                 | Illustrate with examples, Kirchhoff's laws as applied to an electric circuit.                          | 8 |  |  |  |  |
|                               | b                                                                                 | Prove that, the circuit efficiency during maximum power transfer from source                           | 6 |  |  |  |  |
|                               |                                                                                   | to load is only 50%.                                                                                   |   |  |  |  |  |
|                               | С                                                                                 | The equation for an AC voltage is given as $V = 0.04 \sin (2000t+60^{0})$ volts.                       | 6 |  |  |  |  |
|                               |                                                                                   | Determine the frequency, angular frequency and instantaneous voltage when                              |   |  |  |  |  |
|                               |                                                                                   | t=160µs.                                                                                               |   |  |  |  |  |
|                               | 1                                                                                 | OR                                                                                                     |   |  |  |  |  |
| Q.02                          | а                                                                                 | Define R.M.S value of alternating current. Show that its value is proportional to                      | 8 |  |  |  |  |
|                               |                                                                                   | maximum value.                                                                                         |   |  |  |  |  |
|                               | b                                                                                 | A circuit consisting of 12 $\Omega$ , 18 $\Omega$ and 36 $\Omega$ respectively, joined in parallel, is |   |  |  |  |  |
|                               |                                                                                   | connected in series with a fourth resistance. The whole is supplied at 60V and it is                   |   |  |  |  |  |
|                               |                                                                                   | found that the power dissipated in 12 $\Omega$ resistance is 36 W. determine the value of              |   |  |  |  |  |
|                               |                                                                                   | fourth resistance and the total power dissipated in the group.                                         |   |  |  |  |  |
|                               | С                                                                                 | Justify, why pure inductor does not consume any power when connected across                            | 6 |  |  |  |  |
|                               |                                                                                   | single phase A.C. supply?                                                                              |   |  |  |  |  |
|                               | -                                                                                 | Module-2                                                                                               |   |  |  |  |  |
| Q. 03                         | а                                                                                 | Demonstrate that, two wattmeters are sufficient to measure power in a three phase                      | 8 |  |  |  |  |
|                               |                                                                                   | balanced star connected circuit with the help of neat circuit diagram and phasor                       |   |  |  |  |  |
|                               |                                                                                   | diagram.                                                                                               |   |  |  |  |  |
|                               | b                                                                                 | A circuit consists of a resistance of $20\Omega$ , an inductance of 0.05H connected in                 | 6 |  |  |  |  |
|                               |                                                                                   | series. A supply of 230V at 50 Hz is applied across the circuit. Determine the                         |   |  |  |  |  |
|                               |                                                                                   | current, power factor and power consumed by the circuit.                                               |   |  |  |  |  |
|                               | С                                                                                 | Deduce the relationship between the phase and the line voltages of a three phase                       |   |  |  |  |  |
|                               |                                                                                   | star connected system.                                                                                 |   |  |  |  |  |
| OR UR II DI III DI III DI III |                                                                                   |                                                                                                        |   |  |  |  |  |
| Q.04                          | 4 a Develop an equation for the power consumed by an R-L series circuit. Draw the |                                                                                                        | 8 |  |  |  |  |
|                               |                                                                                   | waveforms of voltage, current and power.                                                               |   |  |  |  |  |
|                               | b                                                                                 | When a three phase balanced impedances are connected in star, across a three                           | 6 |  |  |  |  |
|                               |                                                                                   | phase, 415V, 50Hz supply, the line current drawn is 20A, at a lagging p.f of 0.4.                      |   |  |  |  |  |
|                               |                                                                                   | Determine the parameters of the impedance in each phase.                                               | 6 |  |  |  |  |
|                               | C                                                                                 | A balanced 3 phase star connected system draws power from 440V supply. The                             | 6 |  |  |  |  |
|                               |                                                                                   | two wattmeters connected indicate 5KW and 1.2 KW. Determine power, power                               |   |  |  |  |  |
|                               |                                                                                   | factor and current in the circuit.                                                                     |   |  |  |  |  |
| Module-3                      |                                                                                   |                                                                                                        |   |  |  |  |  |
| Q. 05                         | а                                                                                 | Explain the principle of operation and construction of a dc generator.                                 | 8 |  |  |  |  |
|                               | b                                                                                 | How back emf regulates the armature current in a D.C. Motor? Explain with                              | 6 |  |  |  |  |
|                               |                                                                                   | relevant equations.                                                                                    |   |  |  |  |  |
|                               | С                                                                                 | A 4 pole, 1500 r.p.m. D.C. generator has a lap wound armature, having 32 slots                         | 6 |  |  |  |  |
|                               |                                                                                   | and 8 conductors per slot. If the flux per pole is 0.04Wb, datermine the E.M.F.                        |   |  |  |  |  |
|                               | 1                                                                                 | induced in the armature. What would be the E.M.F induced, if the winding is wave                       |   |  |  |  |  |
|                               |                                                                                   | connected.                                                                                             |   |  |  |  |  |

| OR         |                                                                                        |                                                                                      |   |  |  |  |  |  |
|------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---|--|--|--|--|--|
| Q. 06      | а                                                                                      | Discuss various types of losses in a transformer.                                    |   |  |  |  |  |  |
|            | b                                                                                      | With usual notations, develop the torque equation of D.C. motor.                     |   |  |  |  |  |  |
|            | С                                                                                      | A 250 KVA, 11000/415 volts, 50 Hz single phase transformer has 80 turns on the       |   |  |  |  |  |  |
|            |                                                                                        | secondary. Calculate i) Rated primary and secondary currents ii) Number of           |   |  |  |  |  |  |
|            |                                                                                        | primary turns iii) Maximum value of flux in the core iv) Voltage induced/turn on     |   |  |  |  |  |  |
| secondary. |                                                                                        |                                                                                      |   |  |  |  |  |  |
| Module-4   |                                                                                        |                                                                                      |   |  |  |  |  |  |
| Q. 07      | Q. 07 a How foralling magnetic field is set up in case of three phase induction motor? |                                                                                      |   |  |  |  |  |  |
|            |                                                                                        | Illustrate with neat figures.                                                        |   |  |  |  |  |  |
|            | b                                                                                      | What is slip of an induction motor and derive expression for frequency of rotor      |   |  |  |  |  |  |
|            |                                                                                        | current in terms of supply frequency.                                                |   |  |  |  |  |  |
|            | С                                                                                      | A 12 pole 3 phase alternator is coupled to an engine running at 500 rpm. It supplies | 6 |  |  |  |  |  |
|            |                                                                                        | an induction motor which has a full load speed of 1440 rpm. Determine the            |   |  |  |  |  |  |
|            |                                                                                        | percentage slip and the number of poles of the motor.                                |   |  |  |  |  |  |
| OR         |                                                                                        |                                                                                      |   |  |  |  |  |  |
| Q. 08      | a With neat sketches, explain the construction of two types of synchronous             |                                                                                      |   |  |  |  |  |  |
|            |                                                                                        | generator.                                                                           |   |  |  |  |  |  |
|            | b                                                                                      | Develop the E.M.F. equation of synchronous generator.                                |   |  |  |  |  |  |
|            | С                                                                                      | c A 12 pole, 500 rpm star connected alternator has 48 slots with 15 conductors per   |   |  |  |  |  |  |
|            |                                                                                        | slot. The flux per pole is 0.02 Wb and is distributed sinusoidally. The winding      |   |  |  |  |  |  |
|            | factor is 0.97. Calculate the line e.m.f.                                              |                                                                                      |   |  |  |  |  |  |
| Module-5   |                                                                                        |                                                                                      |   |  |  |  |  |  |
| Q. 09      | а                                                                                      | What is electric power supply system? Draw a single line diagram of a typical a.c.   | 8 |  |  |  |  |  |
|            |                                                                                        | power supply scheme.                                                                 |   |  |  |  |  |  |
|            | b                                                                                      | What are the desirable characteristics of a tariff and explain two part tariff.      | 6 |  |  |  |  |  |
|            | С                                                                                      | A consumer has a maximum demand of 200 kW at 40% load factor. If the tariff is       | 6 |  |  |  |  |  |
|            |                                                                                        | Rs. 100 per kW of maximum demand plus 10aise per kWh, Find the overall cost          |   |  |  |  |  |  |
|            | per kWh.                                                                               |                                                                                      |   |  |  |  |  |  |
| OR         |                                                                                        |                                                                                      |   |  |  |  |  |  |
| Q. 10      | а                                                                                      | Explain the working principle of fuse and MCB.                                       | 6 |  |  |  |  |  |
|            | b                                                                                      | What is earthing? Why earthing is required? With the help of neat sketch, explain    |   |  |  |  |  |  |
|            |                                                                                        | plate earthing.                                                                      |   |  |  |  |  |  |
|            | C                                                                                      | write a short note on precautions against an electric shock.                         | 6 |  |  |  |  |  |

| Table showing the Bloom's Taxonomy Level, Course Outcome and Program Outcome |     |                  |         |                      |  |  |  |
|------------------------------------------------------------------------------|-----|------------------|---------|----------------------|--|--|--|
|                                                                              |     |                  |         |                      |  |  |  |
| Question                                                                     |     | Bloom's Taxonomy | Course  | Program Outcome      |  |  |  |
|                                                                              |     | Level attached   | Outcome |                      |  |  |  |
| Q.1                                                                          | (a) | L2               | C01     | PO1, P02,P12         |  |  |  |
|                                                                              | (b) | L3               | C01     | PO1, P02,P03,P08,P12 |  |  |  |
|                                                                              | (c) | L3               | C01     | PO1,P02,P03          |  |  |  |
| Q.2                                                                          | (a) | L4               | C01     | PO1,P02,P03          |  |  |  |
|                                                                              | (b) | L3               | C01     | PO1,P02,P03,P12      |  |  |  |
|                                                                              | (c) | L4               | C01     | PO1,P02,P03,P12      |  |  |  |
| Q.3                                                                          | (a) | L3               | C01     | PO1,P02,P03,P08,P12  |  |  |  |
|                                                                              | (b) | L3               | C01     | P01,P02,P03,P12      |  |  |  |
|                                                                              | (c) | L3               | C01     | P01,P02,P03,P12      |  |  |  |
| Q.4                                                                          | (a) | L3               | C01     | P01,P02,P03,P12      |  |  |  |

|                                |     |                                      |                 |                                |   | 2                           |  |
|--------------------------------|-----|--------------------------------------|-----------------|--------------------------------|---|-----------------------------|--|
|                                | (b) | L3                                   |                 | C01                            | Р | 01,P02,P03,P12              |  |
|                                | (C) | L3                                   |                 | C01                            | Р | 01,P02,P03,P08,P12          |  |
| Q.5                            | (a) | L2                                   |                 | C02                            | P | O1,P02,P08,P09,P12          |  |
|                                | (b) | L3                                   |                 | C02                            | P | 01,P02,P03,P12              |  |
|                                | (C) | L4                                   |                 | C02                            | P | 01,P02,P12                  |  |
| Q.6                            | (a) | L3                                   |                 | C02                            | P | 01,P02,P06,P08,P12          |  |
|                                | (b) | L4                                   |                 | C02                            | P | 01,P02,P12                  |  |
|                                | (C) | L3                                   |                 | C02                            | P | PO1,P02,P08                 |  |
| Q.7                            | (a) | L3                                   |                 | C02                            | P | PO1,P02,P08,P12             |  |
|                                | (b) | L3                                   |                 | C02                            | P | 01,P02,P08,P12              |  |
|                                | (C) | L3                                   |                 | C02                            | P | 01,P02,P12                  |  |
| Q.8                            | (a) | L4                                   |                 | C02                            | Р | 01,P02,P08,P09,P12          |  |
|                                | (b) | L3                                   |                 | C02                            | Р | 01,P02,P08,P12              |  |
|                                | (C) | L4                                   |                 | C02                            | Р | 01,P02,P12                  |  |
| Q.9                            | (a) | L3                                   |                 | C03                            | Р | 01,P02,P08,P12              |  |
|                                | (b) | L3                                   |                 | C04                            | Р | 01,P02,P08,P09,P11,P12      |  |
|                                | (C) | L4                                   |                 | C04                            | Ρ | 01,P02,P12                  |  |
| Q.10                           | (a) | L3                                   |                 | C04                            | Р | 01,P02,P08,P12              |  |
|                                | (b) | L4                                   |                 | C04                            | Ρ | 01,P02, P07,P8,P12          |  |
|                                | (C) | L3                                   |                 | C04                            | Ρ | 01,P02,P07,P08,P12          |  |
|                                |     |                                      |                 |                                |   |                             |  |
| Lower order thinking skills    |     |                                      |                 |                                |   |                             |  |
| Bloom's<br>Taxonom<br>y Levels |     | Remembering(                         | Understa        | inding                         |   | Applying (Application):     |  |
|                                |     | knowledge): $L_1$                    | tension): $L_2$ | 1SION J: $L_2$ $L_3$           |   |                             |  |
|                                |     |                                      | Higher o        | raer thinking skill            | S |                             |  |
|                                |     | Analyzing (Analysis): L <sub>4</sub> | Valuating       | g (Evaluation): L <sub>5</sub> |   | Creating (Synthesis): $L_6$ |  |
|                                |     |                                      |                 |                                |   |                             |  |

