Model Question Paper-I/II with effect from 2021 (CBCS Scheme)

USN \square
First Semester BE Degree Examination Subject Title - Basic Electrical Engineering

TIME: 03 Hours
Max. Marks: 100
Note: Answer any FIVE full questions, choosing at least ONE question from each MODULE.

Module -1			Marks
Q. 01	a	Illustrate with examples, Kirchhoff's laws as applied to an electric circuit.	8
	b	Prove that, the circuit efficiency during maximum power transfer from source to load is only 50%.	6
	C	The equation for an AC voltage is given as $\mathrm{V}=0.04 \sin \left(2000 \mathrm{t}+60^{0}\right)$ volts. Determine the frequency, angular frequency and instantaneous voltage when $\mathrm{t}=160 \mu \mathrm{~s}$.	6
OR			
Q. 02	a	Define R.M.S value of alternating current. Show that its value is proportional to maximum value.	8
	b	A circuit consisting of $12 \Omega, 18 \Omega$ and 36Ω respectively, joined in parallel, is connected in series with a fourth resistance. The whole is supplied at 60 V and it is found that the power dissipated in 12Ω resistance is 36 W . determine the value of fourth resistance and the total power dissipated in the group.	6
	C	Justify, why pure inductor does not consume any power when connected across single phase A.C. supply?	6
Module-2			
Q. 03	a	Demonstrate that, two wattmeters are sufficient to measure power in a three phase balanced star connected circuit with the help of neat circuit diagram and phasor diagram.	8
	b	A circuit consists of a resistance of 20Ω, an inductance of 0.05 H connected in series. A supply of 230 V at 50 Hz is applied across the circuit. Determine the current, power factor and power consumed by the circuit.	6
	c	Deduce the relationship between the phase and the line voltages of a three phase star connected system.	6
OR			
Q. 04	a	Develop an equation for the power consumed by an R-L series circuit. Draw the waveforms of voltage, current and power.	8
	b	When a three phase balanced impedances are connected in star, across a three phase, $415 \mathrm{~V}, 50 \mathrm{~Hz}$ supply, the line current drawn is 20 A , at a lagging p.f of 0.4 . Determine the parameters of the impedance in each phase.	6
	C	A balanced 3 phase star connected system draws power from 440V supply. The two wattmeters connected indicate 5 KW and 1.2 KW. Determine power, power factor and current in the circuit.	6
Module-3			
Q. 05	a	Explain the principle of operation and construction of a dc generator.	8
	b	How back emf regulates the armature current in a D.C. Motor? Explain with relevant equations.	6
	C	A 4 pole, 1500 r.p.m. D.C. generator has a lap wound armature, having 32 slots and 8 conductors per slot. If the flux per pole is 0.04 Wb , datermine the E.M.F. induced in the armature. What would be the E.M.F induced, if the winding is wave connected.	6

OR			
Q. 06	a	Discuss various types of losses in a transformer.	8
	b	With usual notations, develop the torque equation of D.C. motor.	6
	c	A $250 \mathrm{KVA}, 11000 / 415$ volts, 50 Hz single phase transformer has 80 turns on the secondary. Calculate i) Rated primary and secondary currents ii) Number of primary turns iii) Maximum value of flux in the core iv) Voltage induced/turn on secondary.	6
Module-4			
Q. 07	a	How rotating magnetic field is set up in case of three phase induction motor? Illustrate with neat figures.	8
	b	What is slip of an induction motor and derive expression for frequency of rotor current in terms of supply frequency.	6
	c	A 12 pole 3 phase alternator is coupled to an engine running at 500 rpm . It supplies an induction motor which has a full load speed of 1440 rpm . Determine the percentage slip and the number of poles of the motor.	6
OR			
Q. 08	a	With neat sketches, explain the construction of two types of synchronous generator.	8
	b	Develop the E.M.F. equation of synchronous generator.	6
	c	A 12 pole, 500 rpm star connected alternator has 48 slots with 15 conductors per slot. The flux per pole is 0.02 Wb and is distributed sinusoidally. The winding factor is 0.97 . Calculate the line e.m.f.	6
Module-5			
Q. 09	a	What is electric power supply system? Draw a single line diagram of a typical a.c. power supply scheme.	8
	b	What are the desirable characteristics of a tariff and explain two part tariff.	6
	c	A consumer has a maximum demand of 200 kW at 40% load factor. If the tariff is Rs. 100 per kW of maximum demand plus 10 aise per kWh , Find the overall cost per kWh.	6
OR			
Q. 10	a	Explain the working principle of fuse and MCB.	6
	b	What is earthing? Why earthing is required? With the help of neat sketch, explain plate earthing.	8
	c	Write a short note on precautions against an electric shock.	6

Table showing the Bloom's Taxonomy Level, Course Outcome and Program Outcome				
Question		Bloom's Taxonomy Level attached	Course Outcome	Program Outcome
Q. 1	(a)	L2	C01	P01, P02,P12
	(b)	L3	C01	P01, P02,P03,P08,P12
	(c)	L3	C01	P01,P02,P03
Q. 2	(a)	L4	C01	P01,P02,P03
	(b)	L3	C01	P01,P02,P03,P12
	(c)	L4	C01	P01,P02,P03,P12
Q. 3	(a)	L3	C01	P01,P02,P03,P08,P12
	(b)	L3	C01	P01,P02,P03,P12
	(c)	L3	C01	P01,P02,P03,P12
Q. 4	(a)	L3	C01	P01,P02,P03,P12

	(b)	L3	C01	P01,P02,P03,P12
	(c)	L3	C01	P01,P02,P03,P08,P12
Q. 5	(a)	L2	C02	P01,P02,P08,P09,P12
	(b)	L3	C02	P01,P02,P03,P12
	(c)	L4	C02	P01,P02,P12
Q. 6	(a)	L3	C02	P01,P02,P06,P08,P12
	(b)	L4	C02	P01,P02,P12
	(c)	L3	C02	P01,P02,P08
Q. 7	(a)	L3	C02	P01,P02,P08,P12
	(b)	L3	C02	P01,P02,P08,P12
	(c)	L3	C02	P01,P02,P12
Q. 8	(a)	L4	C02	P01,P02,P08,P09,P12
	(b)	L3	C02	P01,P02,P08,P12
	(c)	L4	C02	P01,P02,P12
Q. 9	(a)	L3	C03	P01,P02,P08,P12
	(b)	L3	C04	P01,P02,P08,P09,P11,P12
	(c)	L4	C04	P01,P02,P12
Q. 10	(a)	L3	C04	P01,P02,P08,P12
	(b)	L4	C04	P01,P02, P07,P8,P12
	(c)	L3	C04	P01,P02,P07,P08,P12
Bloom's Taxonom y Levels		Lower order thinking skills		
		Remembering(knowledge): L_{1}	Understanding Comprehension): L_{2}	Applying (Application): L_{3}
		Higher order thinking skills		
		Analyzing (Analysis): L_{4}	Valuating (Evaluation): L_{5}	Creating (Synthesis): L_{6}

