Model Question Paper-I with effect from 2021 (CBCS Scheme)

USN					

First Semester B.E Degree Examination

Calculus and Differential Equations (21MAT11)

TIME: 03 Hours Max. Marks: 100

Note: Answer any **FIVE** full questions, choosing at least **ONE** question from each **MODULE**.

		Module -1	Marks
Q.01	a	With usual notations prove that $\tan \varphi = r \frac{d\theta}{dr}$	06
	b	Find the angle between the curves	07
		$r = a(1 + \cos \theta)$ and $r = b(1 - \cos \theta)$	
	С	Show that the radius of curvature at any point of the cycloid	07
		$x = a(\theta = \sin \theta), \ y = a(1 - \cos \theta) \text{ is } 4a \cos \left(\frac{\theta}{2}\right)$	
		OR	
Q.02	a	If p be the perpendicular from the pole on the tangent, then show that $\frac{1}{p^2} = \frac{1}{r^2} + \frac{1}{r^4} \left(\frac{dr}{d\theta}\right)^2$	06
	b	Find the pedal equation of the curve $r^m = a^m(\cos m\theta + \sin m\theta)$	07
	С	Find the radius of curvature of the curve $x^3 + y^3 = 3axy$ at $\left(\frac{3a}{2}, \frac{3a}{2}\right)$	07
		Module-2	
Q. 03	a	Expand e^{sinx} by Maclaurin's series up to the term containing x^4	06
	b	If $u = f(2x - 3y, 3y - 4z, 4z - 2x)$, show that $6u_x + 4u_y + 3u_z = 0$	07
	С	Examine the function $f(x,y) = xy(1-x-y)$ for extreme values	07
		OR	
Q.04	a	Evaluate (i) $\lim_{x \to 0} \left(\frac{\tan x}{x}\right)^{\frac{1}{x^2}}$ (ii) $\lim_{x \to 0} (\cos x)^{\frac{1}{x^2}}$	06
	b	If $z = e^{ax+by}f(ax-by)$, show that $b\frac{\partial z}{\partial x} + a\frac{\partial z}{\partial y} = 2abz$	07
	С	If $x + y + z = u$, $y + z = uv$ and $z = uvw$, find $\frac{\partial(x,y,z)}{\partial(u,v,w)}$	07

		Module-3	
Q. 05	a	Solve $x \frac{dy}{dx} + y = x^3 y^6$	06
	b	Find the orthogonal trajectories of the family of curves	
		$\frac{x^2}{a^2} + \frac{y^2}{b^2 + \lambda} = 1$, where λ is a parameter	07
	С	Solve $xyp^2 - (x^2 + y^2)p + xy = 0$	07
2.01	1	OR	
Q. 06	a	Solve $(x^2 + y^2 + x)dx + xydy = 0$	06
	b	A copper ball originally at 80° C cools down to 60° C in 20 minutes, if the temperature of the air being 40° C, what will be the temperature of the ball after 40 minutes from the original?	07
	С	Find the general solution of the equation $(px - y)(py + x) = a^2 p$ by reducing into Clairaut's form, taking the substitution $X = x^2$, $Y = y^2$	07
	<u> </u>	Module-4	
Q. 07	a	Solve $\frac{d^3y}{dx^3} - 6\frac{d^2y}{dx^2} + 11\frac{dy}{dx} - 6y = 2e^{3x} + 3$	06
	b	Solve $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = 1 + 3x + x^2$	07
	С	Using method of variation of parameters, solve $\frac{d^2y}{dx^2} + a^2y = \tan ax$	07
		$\frac{dx^2}{dx^2}$	
		OR	
Q. 08	a	Solve $\frac{d^3y}{dx^3} + 4\frac{dy}{dx} = \cos 2x$	06
	b	$Solve \frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = \sin h(2x+3)$	07
	С	Solve $x^2 \frac{d^2 y}{dx^2} - 3x \frac{dy}{dx} + 4y = (1+x)^2$	07
		Module-5	
Q. 09	а	Find the rank of the matrix $ \begin{bmatrix} 2 & 1 & -1 & 3 \\ 1 & 2 & 4 & 3 \\ 3 & 6 & 12 & 9 \\ 3 & 3 & 3 & 6 \end{bmatrix} $	06

b Solve the system of equations by using the Gauss-Jordan method $x+y+z=10$, $2x-y+3z=19$, $x+2y+3z=22$ c Using Rayleigh's power method find the dominant eigenvalue and the corresponding eigenvector of $\begin{bmatrix} 4 & 1 & -1 \\ 2 & 3 & -1 \\ -2 & 1 & 5 \end{bmatrix}$ by taking $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$ as initial eigen vector $\begin{bmatrix} \text{carry out 6 iterations} \end{bmatrix}$ OR Q. 10 a Find the rank of the matrix $\begin{bmatrix} 11 & 12 & 13 & 14 \\ 12 & 13 & 14 & 15 \\ 13 & 14 & 15 & 16 \\ 14 & 15 & 16 & 17 \end{bmatrix}$ b For what values λ and μ the system of equations $x+y+z=6; x+2y+3z=10; x+2y+\lambda z=\mu,$ has (i) no solution (ii) a unique solution and (iii) infinite number of solutions $\begin{bmatrix} 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 $				
c Using Rayleigh's power method find the dominant eigenvalue and the corresponding eigenvector of $\begin{bmatrix} 4 & 1 & -1 \\ 2 & 3 & -1 \\ -2 & 1 & 5 \end{bmatrix}$ by taking $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$ as initial eigen vector $\begin{bmatrix} \text{carry out 6 iterations} \end{bmatrix}$ OR Q. 10 a Find the rank of the matrix $\begin{bmatrix} 11 & 12 & 13 & 14 \\ 12 & 13 & 14 & 15 \\ 13 & 14 & 15 & 16 \\ 14 & 15 & 16 & 17 \end{bmatrix}$ b For what values λ and μ the system of equations $x + y + z = 6; x + 2y + 3z = 10; x + 2y + \lambda z = \mu,$ has (i) no solution (ii) a unique solution and (iii) infinite number of solutions c Solve the system of equations $2x - 3y + 20z = 25;$ $20x + y - 2z = 17;$ $3x + 20y - z = -18,$ Using the Gauss-Seidel method, taking $\{0, 0, 0, 0\}$ as an initial approximate root (Carry out 4 iterations).		b	x + y + z = 10,2x - y + 3z = 19,	07
Find the rank of the matrix $\begin{bmatrix} 11 & 12 & 13 & 14 \\ 12 & 13 & 14 & 15 \\ 13 & 14 & 15 & 16 \\ 14 & 15 & 16 & 17 \end{bmatrix}$ $\begin{bmatrix} b \\ For what values \lambda and \mu the system of equations x+y+z=6; x+2y+3z=10; x+2y+\lambda z=\mu, \\ \text{has (i) no solution} \\ \text{(ii) a unique solution and} \\ \text{(iii) infinite number of solutions} \end{bmatrix} \begin{bmatrix} c \\ Solve \text{ the system of equations} \\ 2x-3y+20z=25; \\ 20x+y-2z=17; \\ 3x+20y-z=-18, \\ \text{Using the Gauss-Seidel method, taking (0, 0, 0) as an initial approximate root (Carry out 4 iterations).} \end{bmatrix}$		С	Using Rayleigh's power method find the dominant eigenvalue and the corresponding eigenvector of $\begin{bmatrix} 4 & 1 & -1 \\ 2 & 3 & -1 \\ -2 & 1 & 5 \end{bmatrix}$ by taking $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$ as initial eigen vector [carry out 6 iterations]	07
For what values λ and μ the system of equations $x+y+z=6; x+2y+3z=10; x+2y+\lambda z=\mu, \\ \text{has (i) no solution} \\ \text{(ii) a unique solution and} \\ \text{(iii) infinite number of solutions} $ C Solve the system of equations $2x-3y+20z=25; \\ 20x+y-2z=17; \\ 3x+20y-z=-18, \\ \text{Using the Gauss-Seidel method, taking (0, 0, 0) as an initial approximate root (Carry out 4 iterations).} $ O7	Q. í	10 a	Find the rank of the matrix [11	06
2x-3y+20z=25; $20x+y-2z=17;$ $3x+20y-z=-18,$ Using the Gauss-Seidel method, taking (0, 0, 0) as an initial approximate root (Carry out 4 iterations).		b	$x+y+z=6;$ $x+2y+3z=10;$ $x+2y+\lambda z=\mu$, has (i) no solution (ii) a unique solution and	07
Table showing the Bloom's Taxonomy Level, Course Outcome and Program Outcome		c	2x-3y+20z=25; $20x+y-2z=17;$ $3x+20y-z=-18,$ Using the Gauss-Seidel method, taking (0, 0, 0) as an initial approximate root (Carry out 4	07
		Tal	ble showing the Bloom's Taxonomy Level, Course Outcome and Program Outcome	

Question		Bloom's Taxonomy Level attached	Course Outcome	Program Outcome	
Q.1	(a)	L1	CO 01	PO 01	
	(b)	L2	CO 01	PO 01	
	(c)	L3	CO 01	PO 02	
Q.2	(a)	L1	CO 01	PO 01	
	(b)	L2	CO 01	PO 01	
	(c)	L3	CO 01	PO 02	
Q.3	(a)	L2	CO 02	PO 01	
	(b)	L2	CO 02	PO 01	
	(c)	L3	CO 02	PO 03	

Q.4	(a)	L2		CO 02	PO 01			
	(b)	L2		CO 02	PO 01			
	(c)	L3		CO 02	PO 02			
Q.5	(a)	L2		CO 03	PO 02			
	(b)	L3		CO 03	PO 03			
	(c)	L2		CO 03	PO 01			
Q.6	(a)	L2		CO 03	PO 02			
	(b)	L3		CO 03	PO 03			
	(c)	L2		CO 03	PO 01			
Q.7	(a)	L2		CO 04	PO 01			
	(b)	L2		CO 04	PO 01			
	(c)	L2		CO 04	PO 02			
Q.8	(a)	L2		CO 04	PO 01			
	(b)	L2		CO 04	PO 01			
	(c)	L2		CO 04	PO 02			
Q.9	(a)	L2		CO 05	PO 01			
	(b)	L3		CO 05	PO 01			
	(c)	L3		CO 05	PO 02			
Q.10	(a)	L2		CO 05	PO 01			
	(b)	L3		CO 05	PO 02			
	(c)	L3		CO 05	PO 01			
Lower order thinking skills								
Bloom'	s	Remembering		Understanding	Applying			
Taxonomy		(Knowledge): L ₁		omprehension): L_2 (Application): L_3				
Levels	5]	Higher-	order thinking skill	S			
	•	Analyzing (Analysis): L ₄		ng (Evaluation): L ₅	Creating (Synthesis): L ₆			