Model Question Paper-I with effect from 2021 (CBCS Scheme)

USN \square

First Semester Engineering Degree Examination
 Subject Title 21PHY12/22

TIME: 03 Hours
Max. Marks: 100
Note: 01. Answer any FIVE full questions, choosing at least ONE question from each MODULE.
02 . Draw neat sketches where ever necessary.
03. Constants : Speed of Light " c " $=3 \times 10^{8} \mathrm{~ms}^{-1}$, Boltzmann Constant " k " $=1.38 \times 10^{-23}$ JK^{-1}, Planck's Constant " h " $=6.625 \times 10-34 \mathrm{Js}$, Acceleration due to gravity " g " $=9.8$ ms^{-2}, Permittivity of free space " $\varepsilon 0^{\prime \prime}=8.854 \times 10^{-12} \mathrm{~F} \mathrm{~m}^{-1}$.

Module -1			Marks
Q.01	a	Define SHM and mention any two examples. Derive the differential equation using Hooke's law. b	07
	cWith a neat diagram, explain the construction and working of Reddy's shock tube. Mention the any three applications of shock waves. A free particle is executing S.H.M in straight line with a period of 5 seconds after it has crossed the equilibrium point, the velocity is found to be0.7m/s. Find the displacement at the end of10 seconds ,and also the amplitude of oscillation.	04	
OR			

	b	With neat diagram explain the working of Intensity based displacement sensor using optical fiber.	07
	c	Estimate the attenuation in an optical fiber of length 500 m when a light signal of power 100 mW emerges out of fiber with a power 90 Mw .	04
OR			
Q. 06	a	Derive the expression for numerical aperture of an optical fiber. Mention any two merits and demerits of optical communication.	10
	b	Explain how laser find application in eye surgery	05
	c	The ratio of population of two energy levels out of which upper one corresponds to a metastable state is 1.059×10^{-30}. Find the wavelength of light emitted at 330 K .	05
Module-4			
Q. 07	a	Mention any four assumptions of Drude-Lorentz model and discuss the success of Quantum free electron theory.	10
	b	Derive Clausius-Mossotti equation.	05
	c	Show that occupation probability at an energy $\mathrm{E}_{\mathrm{F}}+\Delta \mathrm{E}$ is equal to non-occupation probability at the energy $E_{F}-\Delta E$	05
OR			
Q. 08	a	What is Hall effect. Obtain the expression for the Hall coefficient	08
	b	Obtain expression for electrical conductivity in metals on quantum model	08
	c	Find the temperature at which there is 1% probability that a state with an energy 0.5 eV above the fermi energy is occupied.	04
Module-5			
Q. 09	a	With neat diagram, explain the principle, construction and working of Atomic Force Microscope.	10
	b	Explain in brief how crystal size is determined by Scherrer's equation.	05
	c	Determine the wave length of X-rays for crystal size of $1.188 \times 10^{-6} \mathrm{~m}$, peak width is 0.5° and peak position 30°, for a cubic crystal. Given Scherrer's constant $\mathrm{k}=0.92$.	05
OR			
Q. 1	a	Explain the construction and working of X-Ray diffractometer.	07
	b	With neat diagram, explain the principle, construction and working of X-ray photoelectron spectroscope.	08
	c	The first order Bragg reflection occurs when a monochromatic beam of X-rays of wavelength $0.675 \mathrm{~A}^{\circ}$ is incident on a crystal at a glancing angle of 4°. What is the glancing angle for third order Bragg's reflection to occur?	05

Table showing the Bloom's Taxonomy Level, Course Outcome and Program Outcome				
Question		Bloom's Taxonomy	Course	Program Outcome
Q. 1	(a)	L1	C0.1	P0-1,2,12
	(b)	L2	C0.1	P0-1.2,12
	(c)	L3	C0.1	PO-1
Q. 2	(a)	L3	C0.1	P0-1,2,12
	(b)	L2	C0.1	P01,2.12
	(c)	L3	CO.I	P0-1
Q. 3	(a)	L2	C0.2	P0-1,2,12
	(b)	L3	C0.2	P0-1,2,12
	(c)	L3	C0.2	P0-1
Q. 4	(a)	L2	C0.2	P0-1,2,12
	(b)	L3	C0.2	P01,2,12
	(c)	L3	C0.2	P0-1

