Model Question Paper-II with effect from 2021 (CBCS Scheme)

|--|

		FII	RST/SECOND Semester BE Degree Examination ENGINEERING PHYSICS - 21PHY12/22		
TIME: 03 Hours Max. Marks: 100					
No	ote:	2. Dra 3. Con JK ⁻¹	wer any FIVE full questions, choosing at least ONE question from each with meant sketches where ever necessary. Instants: Speed of Light "c" = 3×10^8 ms ⁻¹ , Boltzmann Constant "k" = 10^{-34} Js, Acceleration due to gravity ermittivity of free space " ϵ_0 "= 8.854×10^{-12} F m ⁻¹ .	l.38 ×10-	23
		1	Module -1	Marks	
Q.01	a	variation	the theory of forced oscillations and hence classify the conditions of amplitude and phase with angular frequency.	9	
	b		e the generation of shock waves using the Reddy shock tube.	6	
	С	oscillatio	e damping constant of the medium $0.1~kg~s^{-1}$ calculate the amplitude of the ons at resonance given the mass attached to the spring-mass oscillator $50~x$ the amplitude of the applied periodic force $1N$ and the period of oscillations l.	5	
			OR		
Q.02	a		g Hooke's law arrive at the equations for the effective spring constants of and Parallel combinations of springs.	8	
	b	Enumera	ate the properties and applications of shock waves.	7	
	С	a bullet t	e the Mach number of a Jet fighter traveling with 2000 km hr ⁻¹ with that of traveling with a velocity of 400 ms ⁻¹ in the same medium given the speed of the medium 330 ms ⁻¹ .	5	
			Module-2		
Q. 03	a		the spectral distribution energy in the black body radiation spectrum and plain Wien's displacement law.	8	
	b		d Explain Heisenberg's Uncertainty principle and infer on the classical and mechanical measurements.	7	
	С		etic energy of an electron is equal to the energy of a photon with a gth of 560 nm. Calculate the de Broglie wavelength of the electron.	5	
		Ι	OR		
Q.04	a	infinite h	the motion of a quantum particle in a one-dimensional potential well of the neight and of width 'a' and also examine the quantization of energy.	10	
	b		Rayleigh-Jeans law from Planck's Law of radiation.	5	
	С			5	
		1	Module-3		Ш
Q. 05	a	hence dr	the expression for energy density using Einstein's A and B Coefficients and raw infer on the relation B_{12} = B_{21} .	8	
	b	Discuss t	the attenuation and various losses in optical fibers.	7	
	С		e the number of photons emitted per pulse of duration 1 microsecond given er output of LASER 3 mW and the wavelength of laser 632.8 nm.	5	
Q. 06	а	Define M optical fi	OR Indees of Propagation and RI Profile and Distinguish between the types of bers.	6	

		Subject Code-21	,	
	b	Identify the requisites of the CO2 LASER and Explain its construction and working with the help of a neat sketch and band diagram.	9	
	С	Compare the acceptance angle of an optical fiber placed in air and water given the RI of water 1.33 and the RI of core and clad 1.5 and 1.45 respectively.	5	
		Module-4		
Q. 07	a	Explain the Quantum Mechanical modifications to the classical free electron theory	7	
		of metals to explain the electrical conductivity in solids and its success.	/	
	b	What is Hall effect and illustrate on the determination of the type of charge	0	
	carriers in semiconductors.		8	
	С	An elemental solid dielectric material has polarizability 7 × 10 ⁻⁴⁰ Fm ⁻² . Assuming		
		the internal field to be Lorentz, calculate the dielectric constant for the material if	5	
		the material has 3×10^{28} atoms/m ³ .		
		OR		
Q. 08	a	Deduce the expression for electrical conductivity of a conductor using the quantum	8	
		free electron theory of metals.	8	
	b	Describe in brief the various types of polarization mechanisms.	7	
	c Calculate the probability that an energy level at 0.2eV below Fermi level is occupied		5	
		at temperature 500K.	5	
Modul	le-5			
Q. 09	a	Define nano-material and classify the nano-materials based on the dimensional constraints.	5	
	b	Describe the construction and working of Scanning Electron Microscope with the help	4.0	
		of a neat diagram.	10	
	С	X-rays are diffracted in the first order from a crystal with d spacing 2.8×10^{-10} m at	-	
		a glancing angle 60°. Calculate the wavelength of X-rays.	5	
		OR		
Q. 10	a	Mention the principle and applications of X-ray photoelectron spectroscope.	5	٦
	b	Illustrate the working of Transmission Electron Microscope.	10	_
	С	Determine the crystallite size given the Wavelength of X-Rays 10 nm, the Peak Width 0.5 °and peak position 25 ° for a cubic crystal given K = 0.94.	5	_

Table showing the Bloom's Taxonomy Level, Course Outcome and Program Outcome					
Question		Bloom's Taxonomy Level attached	Course Outcome	Program Outcome	
Q.1	(a)	L2	1	1,2,12	
	(b)	L2	1	1,2,12	
	(c)	L3	1	1,2	
Q.2	(a)	L3	1	1,2,12	
	(b)	L1	1	1,2	
	(c)	L3	1	1,2	
Q.3	(a)	L1	2	1,2,12	
	(b)	L3	2	1,2,12	
	(c)	L3	2	1,2	
Q.4	(a)	L3	2	1,2,12	
	(b)	L2	2	1,2,12	
	(c)	L3	2	1,2	
Q.5	(a)	L4	3	1,2	
	(b)	L2	3	1,2	
	(c)	L3	3	1,2	
Q.6	(a)	L4	3	1,2	
	(b)	L2	3	1,2	
	(c)	L3	3	1,2	
Q.7	(a)	L2	4	1,2	

•						
	(b)) L4		4	1,2	
	(c)	L3		4	1,2	
Q.8	(a)	L2		4	1,2	
	(b)) L2		4	1,2	
	(c)	L3		4	1,2	
Q.9	(a)	L1		5	1,2	
	(b)) L2		5	1,2,12	
	(c)	L3		5	1,2	
Q.10	(a)	L2		5	1,2	
	(b)) L2		5	1,2,12	
	(c)	L3		5	1,2	
		Low	ver order t	thinking skills		
Bloom's Taxonomy Levels		Remembering	Understanding		Applying (Application):	
		(knowledge): L_1	(Comprehension): L_2		L_3	
		Higher order thinking skills				
		Analyzing (Analysis): L_4	Valuating (Evaluation): L_5		Creating (Synthesis): L_6	

