	Note: Answer any FIVE full questions, choosing at least ONE question from each mod	dule.
	Module-I	
1.	(a) Find the rank of the matrix $\begin{bmatrix} 0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \end{bmatrix}$ by elementary applying row transformations.	(06 Marks)
	(b) Solve the following system of linear equations by Gauss elimination method: x+2y+z=3; $2x+3y+3z=10$; $3x-y+2z=13$.	(05 Marks)
	(c) Find the inverse of the matrix $\begin{bmatrix} 5 & -2 \\ 3 & 1 \end{bmatrix}$ using Cayley-Hamilton theorem.	(05 Marks)
	OR	
2.	(a) Find all the eigenvalues and eigenvector corresponding the smallest eigenvalue of $\begin{bmatrix} 1 & -3 & 2 \\ 4 & 4 & -1 \\ 6 & 3 & 5 \end{bmatrix}$	(06 Marks)
	(b) Reduce the matrix $\begin{bmatrix} 3 & -1 & 2 \\ 1 & 0 & 4 \\ 3 & 1 & 2 \end{bmatrix}$ into its echelon form and hence find its rank.	(05 Marks)
	(c) Solve the system of linear equations $x + y + z = 9$; $2x - 3y + 4z = 13$; $3x + 4y + 5z = 40$ by applying Gauss elimination method. <u>Module-II</u>	(05 Marks)
3.	(a) Solve: $(D^2 + 1)y = \cos ecx$ by the method of variation of parameters.	(06 Marks)
	(b)) Solve: $(D^3 - 1)y = 3\cos 2x$	(05 Marks)
	(c)) Solve: $(D^3 + 2D^2 + D)y = x^3$	(05 Marks)
	OR	
4.	(a) Solve: $(D^2 - 1)y = 8xe^x$ by the method of undetermined coefficients.	(06 Marks)
	(b) Solve: $(D^3 - 7D + 6)y = 1 - x + x^2$, where $D = d/dx$	(05 Marks)
	$() (\mathbf{p}^2 - \mathbf{p} - \mathbf{r}) = 2\mathbf{r}$	

Model Question Paper (CBCS) with effect from 2016-17

USN

Time: 3 Hrs

Fourth Semester B.E.(CBCS) Examination **Additional Mathematics - II**

(Common to all Branches)

Max.Marks: 80

Note: Are

- (c)) Solve: $(D^2 2D + 5)y = e^{2x} \sin x$ (05 Marks)

Page 1 of 2

15MATDIP41

15MATDIP41

Module-III

5. (a) Find the Laplace transforms of (i) $t^2 \cos 3t$ (ii) $(1 - e^{-at})/t$ (06 Marks) (b) Find (i) $L\{3\sqrt{t} + 4/\sqrt{t}\}$ (ii) $L\{\cos t \cos 2t \cos 3t\}$ (05 Marks) (c) Find the Laplace transform of $f(t) = \begin{cases} E, & 0 \le t \le a/2 \\ -E, & a/2 \le t \le a \end{cases}$ where f(t+a) = f(t). (05 Marks)

6. (a) Find the Laplace transforms of (i) $\left[\sqrt{t} + 1/\sqrt{t}\right]^3$ (ii) $e^{3t} \sin 5t \sin 3t$ (06 Marks) (b) Find (i) $L\left\{\left(1+e^{-2t}\right)^2\right\}$ (ii) $L\left\{e^{2t}\cos^2 t\right\}$ (c) Express $f(t) = \begin{cases} \sin t & 0 \le t \le \pi\\ \cos t, & t > \pi \end{cases}$ in terms of unit step function and hence find $L\left\{f(t)\right\}$. (05 Marks)

(05 Marks)

Module-IV

7. (a) Using Laplace transforms, solve $\frac{d^2 y}{dt^2} + 2\frac{dy}{dt} + 2y = 5\sin t$ subject to the initial conditions y(0) = 0 = y'(0)(06 Marks)

- (a) Find the inverse Laplace transforms of (i) $L^{-1}\{(s+2)^3/s^6\}$ (ii) $L^{-1}\{(s+5)/(s^2-6s+13)\}$ (05Marks)
- (c) Find (i) $L^{-1}\left[\log\{(s+a)/(s+b)\}\right]$ (ii) $L^{-1}\{3s+2/(s^2-s-2)\}$ (05 Marks)

8. (a) By applying Laplace transforms, solve $\frac{d^2y}{dr^2} + 4\frac{dy}{dr} + 3y = e^{-t}$ subject to the initial conditions y(0) = 1 = y'(0). (06 Marks)

(a) Find the inverse Laplace transforms of (i) $L^{-1} \{3s + 5\sqrt{5}/(s^2 + 8)\}$ (ii) $L^{-1} \{(2s-1)/(s^2 + 4s + 29)\}$ (05Marks)

(c) Find (i)
$$L^{-1}\left[\cot^{-1}(s/a)\right]$$
 (ii) $L^{-1}\left[4s + 5/\{(s+2)(s+1)^2\}\right]$ (05 Marks)

Module-V

9.	(a) State the axiomatic definition of probability. For any two arbitrary events A and B, prove that	
	$P(A \cup B) = P(A) + P(B) - P(A \cap B).$	(06 Marks)
	(b) The probability that a team wins a match is $3/5$. If this team play 3 matches in a tournament,	
	what is the probability that the team (i) win & (ii) loose, all the matches.	(05 Marks)
	(c) In an UG class of a reputed engineering college, 70% are boys and 30% are girls; 5% of boys	
	and 3% of the girls are irregular to the classes. What is the probability of a student selected at	
	random is irregular to the classes and what is the probability that the irregular student is a girl?	(05 Marks)
	OR	
10	(a) State and prove Bayes's theorem.	(06 Marks)
	(b) If A and B are independent events, show that the events \overline{A} and \overline{B} are also independent.	(05 Marks)
	(c) A pair of dice is tossed. Find the probability of scoring "7" points?	(05 Marks)