Model Question Paper

Third Semester B.E Degree(CBCS) Examination
 Analog Electronic circuits

Time : 3hrs
Max Marks:100
Note: Answer FIVE full questions, choosing one full question from each module

Module 1

1 a Draw a double ended clipper circuit and explain its working principle with transfer characteristics.
b For the sketch shown fig. below, Vi varies from 0 to 150 V , sketch the output voltage Vo to the same time scale as the input voltage. Assume ideal diode

c Write the procedure for analyzing the clamping circuit, determine output voltage for the network shown in fig. (1.b) Assume $\mathrm{f}=1000 \mathrm{~Hz}$ and ideal diode.

or

2 a Consider a fixed bias circuit of a transistor. Obtain expressions for stability factor $\mathrm{S}_{\mathrm{ICO}}$, $S_{\text {vBe }}$ and S_{β}. Draw the circuit diagram
b For the circuit shown in fig. find $I_{C}, V_{B}, V_{E}, R_{1}$ and $S_{\text {ICO }}$

c Define operating point. Explain its significance

Module 2

3 a Obtain r-parameter model for CE configuration.
b Draw the circuit of common base amplifier. Derive the expression for current gain, voltage gain, input and output impedance using the model
c For the emitter follower circuit shown in fig. obtain the values of $\mathrm{r}_{\mathrm{e}}, \mathrm{Z}_{\mathrm{i}}, \mathrm{Z}_{\mathrm{o}}$, voltage gain $\left(\mathrm{A}_{\mathrm{V}}\right)$ and current gain $\left(\mathrm{A}_{\mathrm{I}}\right)$. assume $\beta=100$ and $r_{0}=50 \mathrm{k} \Omega$

7 Marks
7 Marks

6 Marks

9 Marks

7 Marks

Model Question Paper Third Semester B.E Degree(CBCS) Examination Analog Electronic circuits

Time : 3hrs
Max Marks:100
Note: Answer FIVE full questions, choosing one full question from each module

or

4 a Define h parameters and hence derive h -parameter model of CC-BJT

6 Marks
6 Marks
8 Marks

10Marks
10 Marks

10 Marks
6 Marks
c A crystal has following parameters:

or

6 a For the voltage series feedback amplifier topology, obtain expression for A_{V} and $R_{i f}$. Also explain the principle of voltage amplifier used in feedback amplifiers.
b List and explain the advantages of employing negative feedback in amplifiers
c Explain the difference between cascade and cascode connections and its applications

Module 4

7 a With a neat diagram explain transformer coupled power amplifier and derive the expression for AC power delivered to the load, show that the maximum efficiency is 50%.
b State and explain Barkhausen criterion for sustained oscillations.
$\mathrm{L}=0.334 \mathrm{H}, \mathrm{C}=0.065 \mathrm{pF}, \mathrm{CM}=1 \mathrm{pF}, \mathrm{R}=5.5 \mathrm{k} \Omega$
Calculate series resonant frequency.
Calculate parallel resonant frequency.

Model Question Paper
 Third Semester B.E Degree(CBCS) Examination
 Analog Electronic circuits

Time : 3hrs
Max Marks:100
Note: Answer FIVE full questions, choosing one full question from each module
Find Q of the crystal.
or

8 a Explain the working of complementary symmetry class B amplifier
b Derive an expression for frequency of oscillations in wien bridge oscillator
c Find the values of R_{C}, R. R' and C for an RC -phase shift oscillator for a frequency of oscillation of 1000 Hz . A transistor is having $\mathrm{h}_{\mathrm{fe}}=200$ and $\mathrm{h}_{\mathrm{ie}}=2 \mathrm{k} \Omega$.

Module 5

9 a Draw the circuit for JFET common source amplifier using fixed biased configuration and determine its input impedance, output impedance and voltage gain using ac equivalent small signal model
b Explain the working and construction of JFET in detail and draw its transfer characteristics

6 Marks

8 Marks
6 Marks

10 Marks

10 Marks and drain characteristics.
or
10 a Explain the depletion and enhancement type MOSFETs, their characteristics and frequency response
b For the circuit shown in fig.
a) Calculate Z_{i} and Z_{o}
b) Calculate A_{v}
c) Calculate V_{O}, for $\mathrm{V}_{\mathrm{i}}=1 \mathrm{mV}(\mathrm{rms})$
d) Repeat from (a) to (c) neglecting the effect of $r_{d} 10$
(Given $\mathrm{I}_{\mathrm{DSS}}=12 \mathrm{~mA}, \mathrm{~V}_{\mathrm{P}}=-3.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{GSQ}}=-$ $0.75 \mathrm{~V}, \mathrm{r}_{\mathrm{d}}=50 \mathrm{k} \Omega$)

