USN

Model Question Paper Third Semester B.E Degree(CBCS) Examination **Analog Electronic circuits**

Time : 3hrs

С

a

3

Max Marks:100

17EE34

Note: Answer FIVE full questions, choosing one full question from each module

Module 1

- 1 Draw a double ended clipper circuit and explain its working principle with transfer 7 Marks а characteristics. For the sketch shown fig. below, Vi varies from 0 to 150 7 Marks b D, Da V, sketch the output voltage Vo to the same time scale as the input voltage. Assume ideal diode
 - Write the procedure for analyzing the С clamping circuit, determine output voltage for the network shown in fig. (1.b) Assume f=1000Hz and ideal diode.

170 100 LNF

D

SV

Zlooka

100 /0

IOOKA

VI

6 Marks

or

Vin

10V

- Consider a fixed bias circuit of a transistor. Obtain expressions for stability factor S_{ICO} , 2 a S_{VBE} and S_{β} . Draw the circuit diagram
 - For the circuit shown in fig. find I_C, V_B, V_E, R₁ and S_{ICO} b

7 Marks

4 Marks

5 Marks

8 Marks

Draw the circuit of common base amplifier. Derive the expression for current gain, voltage 7 Marks b gain, input and output impedance using the model

Module 2

For the emitter follower circuit shown in fig. obtain the С values of r_e , Z_i , Z_o voltage gain(A_V) and current gain (A_I). assume β =100 and r_0 = 50k Ω

Define operating point. Explain its significance

Obtain r- parameter model for CE configuration.

121 1KR Sora 10µF 10UE V: 4700 LUKR Т

9 Marks

Model Question Paper Third Semester B.E Degree(CBCS) Examination Analog Electronic circuits

Max Marks:100

Note: Answer FIVE full questions, choosing one full question from each module

or

- 4 a Define h parameters and hence derive h-parameter model of CC-BJT
 - b State and prove miller's theorem

Time : 3hrs

c For common base amplifier shown in fig. determine Z_i , A_I , A_V , and Z_O using complete hybrid equivalent model. (Given $h_{ie}=1.6k\Omega$, $h_{fe}=100$, $h_{re}=2 \times 10^{-4}$, $h_{oe}=20\mu$ S.)

6 Marks

6 Marks

8 Marks

Module 3

- 5 a Draw the circuit of Darlington emitter follower. Derive the expression for current gain, **10Marks** voltage gain, input and output impedance using the model.
 - b For the cascode circuit shown below calculate
 - a) The dc bias voltages V_{B1} , V_{B2} , V_{C2}
 - b) The no load voltage gain and the output voltages $V_{O2}=V_O$
 - c) The voltage gain with load of $10k\Omega$ connected to the second stage and the output voltage V_O
 - d) Input and output impedances

10 Marks

or

For the voltage series feedback amplifier topology, obtain expression for A_V and R_{if}. Also 6 10 Marks a explain the principle of voltage amplifier used in feedback amplifiers. List and explain the advantages of employing negative feedback in amplifiers 6 Marks b Explain the difference between cascade and cascode connections and its applications 4 Marks с Module 4 With a neat diagram explain transformer coupled power amplifier and derive the 7 а 10 Marks expression for AC power delivered to the load, show that the maximum efficiency is 50%. State and explain Barkhausen criterion for sustained oscillations. **5** Marks b A crystal has following parameters: 5 Marks С L=0.334H, C= 0.065pF, CM=1pF, R=5.5kΩ Calculate series resonant frequency. Calculate parallel resonant frequency.

17EE34

Model Question Paper Third Semester B.E Degree(CBCS) Examination Analog Electronic circuits

Time : 3hrsMax Marks:100Note: Answer FIVE full questions, choosing one full question from each module

Find Q of the crystal.

n	1	•
υ	-	

		ŬÎ.		
8 a		Explain the working of complementary symmetry class B amplifier		
	b	Derive an expression for frequency of oscillations in wien bridge oscillator		
	c	Find the values of R_c , R. R' and C for an RC –phase shift oscillator for a frequency of oscillation of 1000 Hz. A transistor is having $h_{fe}=200$ and $h_{ie}=2k\Omega$.	6 Marks	
		Module 5		
9	a Draw the circuit for JFET common source amplifier using fixed biased configuration an determine its input impedance, output impedance and voltage gain using ac equivalent small signal model			
	b	Explain the working and construction of JFET in detail and draw its transfer characteristics and drain characteristics.	10 Marks	
		or		
10	а	Explain the depletion and enhancement type MOSFETs, their characteristics and		
		frequency response		
	b	For the circuit shown in fig. 20°	10 Marks	
		a) Calculate Z_i and Z_o		
		b) Calculate A _V		
		c) Calculate V_0 , for $V_i=1mV(rms)$		
		d) Repeat from (a) to (c)		
		neglecting the effect of $r_d 10$		

(Given I_{DSS}=12mA, V_P=-3.5V, V_{GSQ}= - 0.75V, r_d =50k Ω)

