\square

Third Semester B E Degree Examination, December 2018
 Electric Circuit Analysis

Time: 3 Hours
Max. Marks: 100
Note: Answer FIVE full Questions choosing one full question from each module.
1.
a. Reduce the network into equivalent circuit between $\mathbf{A} \& B$ terminals by stardelta transformation for the network shown in fig (1.a).

10M

b. Using mesh current analysis finds loop currents for the circuit shown in fig (1.b). 10M

OR

2.

a. Using source transformation find the power delivered by 50 V source in given network of fig 2 (a)

b. Find all node voltages for the circuit shown in fig (2.b) using node analysis.
3.
a. State and prove Superposition Theorem.
b. Prove Reciprocity Theorem for the circuits shown in fig (3.b).

OR
4.
a. Find the Thevenin's equivalent ckt of the ckt shown in fig(4.a).

10M
b. Find Norton's equivalent circuit at the terminals shown in fig (4.b).

5.
a. Show that in series resonant circuit the resonant frequency is equal to the geometric mean of half power frequencies.
b. A two branch anti resonance ckt contains $\mathrm{L}=\mathbf{0 . 4 H} \& \mathrm{C}=\mathbf{4 0}$ microF. Resonance is to be achieved by variation of $R_{L} \& R_{C}$. calculate the resonant frequency for the following cases
i. $\quad R_{L}=120$ ohm, $\quad R_{C}=80$ ohm
ii $\quad R_{L}=100$ ohm,$\quad R_{C}=100$ ohm

OR

6.

a. Show that
i. The voltage of a capacitor cannot Change instantly.
ii The current in an inductor cannot change instantly.

7.
a. State and Prove Initial and final value theorem.

10M
b. Find Laplace of the saw tooth waveform shown in fig 7.b 10M

8.
a. Obtain the Laplace transform of i) ramp function (t-2) $u(t) \quad$ ii) exponential function $e^{-a t} u(t) \quad$ iii) sinusoidal function $\sin \omega t u(t) \quad$ iv) $V(t)=\mathbf{4 u}(t-2)-3 u(t)$ $v)$ impulse function $\delta(t) u(t)$. 10M
b. Obtain Laplace Transform of system shown in fig(8.b). 10M

Fig 8.b
9.
a. Define two port networks and Give expression for T parameters.

10M
b. Following short circuit currents and voltages are obtained experimentally for a two port network: Determine Y parameters

10M
i) With output short circuited $I_{1}=5 \mathrm{~mA}$; $\quad I_{2}=-0.3 \mathrm{~mA}$ and $V_{1}=25 \mathrm{~V}$
ii) With input short circuited $I_{1}=-5 \mathrm{~mA} ; \quad I_{2}=10 \mathrm{~mA}$ and $V_{2}=30 \mathrm{~V}$

OR

10.

c. Express \mathbf{Z} parameters in terms of Y parameters. 10M
d. Following are the hybrid parameters for a network Determine the Y parameters for the network

$$
\left[\begin{array}{ll}
h_{11} & h_{12} \\
h_{21} & h_{22}
\end{array}\right]=\left[\begin{array}{ll}
5 & 2 \\
3 & 6
\end{array}\right]
$$

