\square

Third Semester B.E.(CBCS) Examination Engineering Mathematics-III

(Common to all Branches)
Time: 3 Hrs
Max.Marks: 80
Note: Answer any FIVE full questions, choosing at least ONE question from each module

Module-I

1. (a) Find the Fourier series expansion of $f(x)$, if $f(x)= \begin{cases}-\pi, & \text { in }-\pi \leq x<0 \\ x, & \text { in } 0<x \leq \pi .\end{cases}$

Hence deduce that $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots=\frac{\pi^{2}}{8}$.
(08 Marks)
(b) A periodic function $f(x)$ of period ' 6 ' is specified by the following table over the interval $(0,6)$:

x	0	1	2	3	4	5	6
$f(x)$	9	18	24	28	26	20	9

Obtain the Fourier series of $f(x)$ up to second harmonics.

OR

2. (a) Expand the function $f(x)=[(\pi-x) / 2]^{2}$ as a Fourier series in the interval $0 \leq x \leq 2 \pi$.

Hence deduce that $\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots=\frac{\pi^{2}}{6}$.
(06 Marks)
(b) Obtain the Fourier series of $f(x)=|x|$ valid in the interval $(-l, l)$.
(05 Marks)
(c) Find the half-range sine series of $f(x)=(x-1)^{2}$ the interval $0 \leq x \leq 1$.

Module-II

3. (a) If $f(x)=\left\{\begin{array}{lll}1, & \text { for } & |x| \leq 1 \\ 0 & \text { for } & |x|>1\end{array}\right.$, find the infinite Fourier transform of $f(x)$ and hence evaluate $\int_{0}^{\infty} \frac{\sin x}{x} d x$
(06 Marks)
(b) Find the Fourier sine transform of $e^{-|x|}$.Hence show that $\int_{0}^{\infty} \frac{x \sin m x}{1+x^{2}} d x=\frac{\pi e^{-m}}{2}, m .>0$.
(05 Marks)
(c) Find the Z-transform of (i) $\cos n \theta \&(i i) \sin n \theta$
4. (a) Using Z-transform, solve $y_{n+2}-4 y_{n}=0$, given that $y_{0}=0, y_{1}=2$
(b) Find the complex Fourier transform of $e^{-a^{2} x^{2}}(a>0)$
(c) Obtain the inverse Z-transform of $18 z^{2} /[(2 z-1)(4 z+1)]$

Module-III

5. (a) Calculate the Karl Pearson's coefficient of correlation for 10 students who have obtained the following percentage of marks in Mathematics and Electronics:
(06 Marks)

Roll No.	1	2	3	4	5	6	7	8	9	10
Marks in Mathematics	78	36	98	25	75	82	90	62	65	39
Marks in Electronics	84	51	91	60	68	62	86	58	53	47

(b) Fit a best fitting parabola $y=a x^{2}+b x+c$ for the following data:
(05 Marks)

x	1	2	3	4	5
y	10	12	13	16	19

(c) Using regula-falsi method compute the real root of the equation $x e^{x}=2$, correct to three decimal places.
(05 Marks)

OR

6. (a) Fit a curve of the form $y=a e^{b x}$ to the following data:
(06 Marks)

x	77	100	185	239	285
y	2.4	3.4	7.0	11.1	19.6

(b) If θ is the acute angle between the lines of regression, then show that $\tan \theta=\frac{\sigma_{x} \sigma_{y}}{\sigma_{x}^{2}+\sigma_{y}^{2}}\left(\frac{1-r^{2}}{r}\right)$.

Explain the significance of $\tan \theta$ when $r=0 \& r= \pm 1$.
(05 Marks)
(c) Find the real root of the equation $x \sin x+\cos x=0$ near $x=\pi$ correct four decimal places, using Newton- Raphson method. Carryout three iterations

Module-IV

7. (a) From the data given below, find the number of students who obtained (i) less than 45 marks and, (ii) between $40 \& 45$ marks:
(06 Marks)

Marks	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
No .of Students	31	42	51	35	31

(b) Using Newton's general interpolation formula, fit an interpolating polynomial for the following data:
(05 Marks)

x	-4	-1	0	2	5
$f(x)$	1245	33	5	9	1335

(c) Using Simpson's $(1 / 3)^{r d}$ rule, evaluate $\int_{0}^{1} \frac{d x}{1+x^{2}}$, taking $h=1 / 6$.
(05 Marks)

OR

8. (a) From the following table, which gives the distance y (in nautical miles) of the visible horizon for the given given heights x (in feet) above the earth' surface, find the value of y at $x=410$:
(06 Marks)

x	100	150	200	250	300	350	400
y	10.63	13.03	15.04	16.81	18.42	19.90	21.27

(b) Use Lagrange's interpolation formula to find $f(4)$, given:
(05 Marks)

x	0	2	3	6
$f(x)$	-4	2	14	158

(c) Use Weddle's rule to evaluate $\int_{0}^{\pi / 2} \sqrt{\cos \theta} d \theta$, dividing $[0, \pi / 2]$ into six equal parts.
(05 Marks)

Module-V

9. (a) Derive Euler's equation in the standard form viz., $\frac{\partial f}{\partial y}-\frac{d}{d x}\left[\frac{\partial f}{\partial y^{\prime}}\right]=0$.
(06 Marks)
(b) Find the curve on which the functional $\int_{0}^{1}\left(y^{2}+x^{2} y^{\prime}\right) d x$ with $y(0)=0, y(1)=1$, can be extermized.
(05 Marks)
(c) If $\vec{F}=3 x y \vec{i}-y^{2} \vec{j}$, evaluate $\int_{C} \vec{F} \cdot d \vec{r}$ where C is the arc of parabola $y=2 x^{2}$ from $(0,0)$ to $(1,2)$.

OR

10. (a) Verify Green's theorem in the plane for $\oint_{c}\left(x y+y^{2}\right) d x+x^{2} d y$ where C is the closed curve bounded by $y=x \quad \& \quad y=x^{2}$.
(06 Marks)
(b) Using Stoke's theorem, evaluate $\iint_{S}(\nabla \times \vec{F}) \cdot \hat{n} d S$ where $\vec{F}=3 y \vec{i}-x z \vec{j}+y z^{2} \vec{k}$ and S is the surface of the paraboloid $2 z=x^{2}+y^{2}$ bounded by $z=2$.
(05 Marks)
(c) Prove that geodesics on a plane are straight lines.
