(05 Marks)

USN

Time: 3 Hrs

Third Semester B.E.(CBCS) Examination Engineering Mathematics-III

(Common to all Branches)

Max.Marks: 80

Note: Answer any FIVE full questions, choosing at least ONE question from each module

Module-I

1. (a) Find the Fourier series expansion of f(x), if $f(x) = \begin{cases} -\pi, & \text{in } -\pi \le x < 0 \\ x, & \text{in } 0 < x \le \pi. \end{cases}$

Hones deduce that	1	1	1	π^2	
Tience deduce that	$\overline{1^2}$	$+\frac{1}{3^2}$	$\overline{5^2}$	$+\frac{-}{8}$.	

(b) A periodic function f(x) of period '6' is specified by the following table over the interval (0,6):

x	0	1	2	3	4	5	6
f(x)	9	18	24	28	26	20	9

Obtain the Fourier series of f(x) up to second harmonics.

OR

2. (a) Expand the function
$$f(x) = [(\pi - x)/2]^2$$
 as a Fourier series in the interval $0 \le x \le 2\pi$.

Hence deduce tha	t $\frac{1}{1^2}$	$+\frac{1}{2^2}$	$+\frac{1}{3^2}+$	$\dots = \frac{\pi^2}{6}.$	(06 Marks)
~ · · · - ·			a a()		

- (b) Obtain the Fourier series of f(x) = |x| valid in the interval (-l, l). (05 Marks)
- (c) Find the half-range sine series of $f(x) = (x-1)^2$ the interval $0 \le x \le 1$. (05 Marks)

<u>Module-II</u>

3. (a) If $f(x) = \begin{cases} 1, & \text{for } |x| \le 1 \\ 0 & \text{for } |x| > 1 \end{cases}$, find the infinite Fourier transform of f(x) and hence evaluate $\int_{0}^{\infty} \frac{\sin x}{x} dx$ (06 Marks)

(b) Find the Fourier sine transform of $e^{-|x|}$. Hence show that $\int_{0}^{\infty} \frac{x \sin mx}{1+x^2} dx = \frac{\pi e^{-m}}{2}, m > 0.$ (05 Marks)

(c) Find the Z-transform of $(i)\cos n\theta \& (ii)\sin n\theta$

15MAT31

(08 Marks)

(08 Marks)

Page 2 of 3

$y_0 = 0, y_1 = 2$ (06 Marks)

4. (a) Using Z-transform, solve $y_{n+2} - 4y_n = 0$, given that $y_0 = 0, y_1 = 2$	
--	--

(b) Find the complex Fourier transform of $e^{-a^2x^2}(a > 0)$

(c) Obtain the inverse Z-transform of $18z^2/[(2z-1)(4z+1)]$

Module-III

5. (a) Calculate the Karl Pearson's coefficient of correlation for 10 students who have obtained the following percentage of marks in Mathematics and Electronics:

Roll No.	1	2	3	4	5	6	7	8	9	10
Marks in Mathematics	78	36	98	25	75	82	90	62	65	39
Marks in Electronics	84	51	91	60	68	62	86	58	53	47

(b) Fit a best fitting parabola $y = ax^2 + bx + c$ for the following data:

x	1	2	3	4	5
у	10	12	13	16	19

(c) Using regula-falsi method compute the real root of the equation $xe^x = 2$, correct to three decimal places.

OR

6. (a) Fit a curve of the form $y = ae^{bx}$ to the following data:

x	77	100	185	239	285
у	2.4	3.4	7.0	11.1	19.6

(b) If θ is the acute angle between the lines of regression, then show that $\tan \theta = \frac{\sigma_x \sigma_y}{\sigma_x^2 + \sigma_y^2} \left(\frac{1 - r^2}{r}\right)$.

Explain the significance of $\tan \theta$ when $r = 0 \& r = \pm 1$.

(c) Find the real root of the equation $x \sin x + \cos x = 0$ near $x = \pi$ correct four decimal places, using Newton-Raphson method. Carryout three iterations

Module-IV

7. (a) From the data given below, find the number of students who obtained (i) less than 45 marks and, (ii) between 40 & 45 marks:

Marks	30-40	40-50	50-60	60-70	70-80
No .of Students	31	42	51	35	31

(b) Using Newton's general interpolation formula, fit an interpolating polynomial for the following data:

(05 Marks)

x	-4	-1	0	2	5
f(x)	1245	33	5	9	1335

(06 Marks)

(06 Marks)

(05 Marks)

(05 Marks)

(05 N 1)

(05 Marks)

(06 Marks)

(05 Marks)

(05 Marks)

(05 Marks)

(05 Marks)

(05 Marks)

(c) Using Simpson's
$$(1/3)^{rd}$$
 rule, evaluate $\int_{0}^{1} \frac{dx}{1+x^2}$, taking $h = 1/6$. (05 Marks)

OR

8. (a) From the following table, which gives the distance y (in nautical miles) of the visible horizon for the given given heights x (in feet) above the earth' surface, find the value of y at x = 410: (06 Marks)

x	100	150	200	250	300	350	400
у	10.63	13.03	15.04	16.81	18.42	19.90	21.27

(b) Use Lagrange's interpolation formula to find f(4), given:

x	0	2	3	6
f(x)	-4	2	14	158

(c) Use Weddle's rule to evaluate $\int_{0}^{\pi/2} \sqrt{\cos\theta} d\theta$, dividing $[0, \pi/2]$ into six equal parts. (05 Marks)

Module-V

9. (a) Derive Euler's equation in the standard form viz., $\frac{\partial f}{\partial y} - \frac{d}{dx} \left[\frac{\partial f}{\partial y'} \right] = 0.$ (06 Marks)

(b) Find the curve on which the functional $\int_{0}^{1} (y^{2} + x^{2} y') dx$ with y(0) = 0, y(1) = 1, can be extermized. (c) If $\vec{F} = 3xy\vec{i} - y^{2}\vec{j}$, evaluate $\int_{C} \vec{F} \cdot d\vec{r}$ where C is the arc of parabola $y = 2x^{2}$ (05 Marks)

from (0,0) to (1,2).

OR

10. (a) Verify Green's theorem in the plane for $\oint (xy + y^2)dx + x^2dy$ where *C* is the closed curve bounded

- by $y = x & \& y = x^2$. (b) Using Stoke's theorem, evaluate $\iint_{s} (\nabla \times \vec{F}) \cdot \hat{n} dS$ where $\vec{F} = 3y\vec{i} - xz\vec{j} + yz^2\vec{k}$ and S is the surface of the paraboloid $2z = x^2 + y^2$ bounded by z = 2. (05 Marks)
- (c) Prove that geodesics on a plane are straight lines.

(05 Marks)