Model Question Paper with effect from 2017-18 **CBCS Scheme**

17PHY12/22

First/Second Semester B.E. Degree Examination **Engineering Physics**

Time : 3 hrs

Max. Marks: 100

Note: 1. Answer FIVE full questions, choosing one full question from each module. 2. Physical constants: Velocity of light $c = 3 \times 10^8 m/s$; $h = 6.625 \times 10^{-34} JS$; $k = 1.38 \times 10^{-23} J/K$; $N_A = 6.02 \times 10^{23}$ /Kmole; $m_e = 9.1 \times 10^{-31}$ kg; $e = 1.6 \times 10^{-19}$ C.

Module – 1

- What is a black body? Discuss in brief Wien's law and Rayleigh jean's law to explain black **1** a. body spectrum. Describe ultraviolet catastrophe. (8 marks)
 - State and explain Heisenberg uncertainty principle. Discuss the significance of the principle. b. Prove that, using uncertainty principle, the electron emitted during β -decay is not the preexisted electron in nucleus. (8 marks)
 - An electron is confined to a potential well of infinite height and width $5A^0$. Calculate the de c. Broglie wavelength when the electron is (i) in ground state and (ii) 3rd excited state (4 marks)

OR

- What are matter waves? Discuss their characteristics **2** a. (5 marks) Define Phase velocity and Group velocity. Obtain the relation between them and hence show b. that in a non-dispersion medium the group and phase velocities are same. (8 marks) (3 marks)
 - Write a short note on properties of wave function. c.
 - Find the kinetic energy of an electron whose de Broglie wavelength is the same as that of a d. 100keV x-ray. (4 marks)

Module-2

- **3** a. Define the terms drift velocity, thermal velocity, mean free path and relaxation time. Explain why thermal velocity is not responsible for electric current in a conductor. (5 marks)
 - Explain briefly the formation of cooper pairs and hence BCS theory b. (5 marks)
 - Discuss any three major failures of classical free electron theory. c. (6 marks)
 - For a metal having 6.5 x 10 28 free electrons per unit volume the relaxation time at room temperature 300K is 3.82 x 10 $^{-14}$ second. Calculate its electrical resistivity using classical free d. electron theory (4 marks)

OR

- What is a super conductor? Explain Meissner effect **4** a. (4 marks) Give the expressions for concentration of electrons and holes in an intrinsic semi-conductor. b. Obtain the expression for electrical conductivity of intrinsic semiconductor. (8 marks)
 - What is Fermi-Dirac statistics? Explain (4 marks) c.
 - A superconducting tin has a critical temperature at 3.7K in zero magnetic fields and a critical d. field of 0.0306 T at 0K. Find the critical field at $T_{\rm C}$. (4 marks)

Module-3

5	a.	State and explain the necessary conditions for laser	(5 marks)	
	b.	With a neat diagram explain the construction and working of semiconductor laser	(7 marks)	
	c.	Describe briefly the application of laser in welding and cutting	(4marks)	
	d. The angle of acceptance of an optical fiber is 30° when kept in air. Find the angle of			
	acc	eptance when it is in a medium of RI 1.33	(4 marks)	
	OR			
6	a.	. What is attenuation in optical fiber? Discuss the various loss factors in optical fiber		
		communication	(7 marks)	
	b.	Discuss the any three advantages and disadvantages of optical fiber communication system		
		over conventional communication system	(6 marks)	
	c.	Mention the applications of holography	(3 marks)	
	d.	Calculate on the basis of Einstein's theory, the number of photons emitted per second	ond by laser	
		source emitting light of wavelength 6328A ⁰ with an optical power output 10mW.	(4 marks)	
<u>Module – 4</u>				
7	a.	Define lattice points, unit cell, Bravais lattice and primitive cell	(4 marks)	
-	b.	Describe briefly the seven crystal systems	(7 marks)	
	с.	in an expression for the inter planar distance in a cubic crystal in terms of Miller in		
	с.		(6 marks)	
	d.	The grating space of calcite is $3.036A^0$ and for the first order Bragg reflection the	glancing	
		angle is 12° . Find the path difference between the rays	(3 marks)	
	OR			
8	a.	Discuss the allotropy of carbon with reference to diamond and graphite	(4 marks)	
	b.	Give a qualitative explanation of perovskite crystal structure	(6 marks)	
	c. Define coordination number and packing factor. Calculate the packing factor for BCC			
		structure	(6 marks)	
		_		

d. Draw the crystal planes (120), (1110, (101) and $(\overline{1}00)$ in a cubic crystal. (4 marks)

<u>Module – 5</u>

Define Mach number and hence distinguish between subsonic and supersonic waves (4 marks) List the properties of shock waves. Give an example for weak and strong shock waves	
With a neat diagram explain the construction and working of Reddy shock tube Discuss the advantages of Sol-Gel method	(6 marks) (7 marks) (3 marks)
OR	
With a neat diagram explain how the carbon nano tubes are synthesized using arc discharge	
method.	(8 marks)
Describe density of states for various quantum structures	(6 marks)
Discuss the basics of conservation of mass, momentum and energy	(6 marks)
	 Define Mach number and hence distinguish between subsonic and supersonic way List the properties of shock waves. Give an example for weak and strong shock waves. With a neat diagram explain the construction and working of Reddy shock tube Discuss the advantages of Sol-Gel method. With a neat diagram explain how the carbon nano tubes are synthesized using arc method. Describe density of states for various quantum structures Discuss the basics of conservation of mass, momentum and energy