Model Question Paper-1 with effect from 2019-20 (CBCS Scheme)

Fourth Semester B.E.(CBCS) Examination Additional Mathematics - II

(Common to all Branches)

Note: Answer any FIVE full questions, choosing at least ONE question from each module.

Module-1

(a)	Find the rank of the following matrix by applying elementary row transformations	(06 Marks)
	$\begin{bmatrix} 2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \end{bmatrix}$	
(b)	Solve the following system of linear equations by Gauss elimination method: 5x + 10y + z = 28; x + y + z = 6; 4x + 8y + 3z = 29.	(07Marks)
(c)	Find all the eigenvalues and the corresponding eigenvectors of $\begin{bmatrix} -5 & 9 \\ -6 & 10 \end{bmatrix}$	(07Marks)

OR

2	(a)	Reduce the matrix into its echelon form and hence find its rank	(06 Marks)
	. ,	[3 2 1]	
		$\begin{bmatrix} 6 & 2 & 4 \end{bmatrix}$	
	(b)	Find all the eigenvalues and the corresponding eigenvectors of	(07Marks)
		[-1 1 2]	

(c) Solve the system of linear equations 3x + y - z = 3; 2x - 8y + z = -5; x - 2y + 9z = 8, (07Marks) by applying Gauss elimination method.

Module-2

- 3 (a) Find a real root of $x \log_{10} x 1.2 = 0$, correct to three decimal places lying in the interval (06 Marks) (2,3), by using Regula-Falsi method.
 - (b) Use an appropriate interpolation formula to compute f(2.18) for the following data (07Marks)

	x	1.7	1.8	1.9	2.0	2.1	2.2
	f(x)	5.474	6.050	6.686	7.389	8.166	9.025
- /2							

(c) Use Weddle's rule to evaluate $\int_{-\pi/2}^{\pi/2} \cos x \, dx$, by dividing $[-\pi/2, \pi/2]$ into six equal parts. (07Marks)

Time: 3 Hrs

1

USN

18MATDIP41

Max.Marks: 100

18MATDIP41

(07Marks)

(07Marks)

OR

- Find a real root of the equation $x^3 + x^2 + 3x + 4 = 0$ near x = -1 correct to four decimal 4 (a) (06 Marks) places, by using Newton- Raphson method.
 - Use an appropriate interpolation formula to compute f(42) for the following data: (b)

x	40	50	60	70	80	90
f(x)	184	204	226	250	276	304
		a 1				

Using Simpson's $(1/3)^{rd}$ rule, evaluate $\int_0^3 \frac{dx}{(1+x)^2}$ by taking 6 equidistant ordinates. (C)

Module-3

5 (a) Solve:
$$\frac{d^3y}{dx^3} - 3\frac{dy}{dx} - 2y = 0.$$
 (06 Marks)
(b) Solve: $(D^2 - 7D + 10)w = (1 + e^x)^2$

(b) Solve:
$$(D^2 - 7D + 10)y = (1 + e^x)^2$$
. (0/Marks)
(c) Solve: $(D^2 + 2D + 3)y = \sin x$. (07Marks)

(c) Solve:
$$(D^2 + 2D + 3)y = \sin x$$
.

OR

6 (a) Solve:
$$(D^3 - 2D^2 + 4D - 8)y = 0.$$
 (06 Marks)
(b) $y = d^2y$ (07 Marks)

(b) Solve
$$\frac{d^2y}{dx^2} - 4y = cosh(2x - 1) + 3^x$$
.
(c) Solve $(D^2 + a^2)y = cos a x$.
(07Marks)
(07Marks)

Module-4

7	(a)	Form the partial differential equation by eliminating the arbitrary constants from	(07Marks)
		$2z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$	

Form the partial differential equation by eliminating the arbitrary functions from (b) z = f(y + 2x) + g(y - 3x)

(c) Solve
$$\frac{\partial^2 z}{\partial x \partial y} = \sin x \sin y$$
, for which $\frac{\partial z}{\partial y} = -2 \sin y$, when $x = 0$ and $z = 0$ when y is odd. (07Marks)

OR

ation by el (b) Form the partial unreferring $z = xf_1(x + y) + f_2(x + y).$ nating the arbitrary

(c) Solve
$$\frac{\partial^2 z}{\partial x \partial y} = \frac{x}{y}$$
 for which $\frac{\partial z}{\partial x} = \log x$ when $y = 1$ and $z = 0$ when $x = 1$. (07Marks)

18MATDIP41

Module-5

- 9 (a) State the axiomatic definition of probability. For any two arbitrary events A and B, prove that (06 Marks) $P(A \cup B) = P(A) + P(B) - P(A \cap B).$
 - (b) The probability that a team wins a match is 3/5. If this team play 3 matches in a tournament, (07Marks) what is the probability that the team (i) win and (ii) loose, all the matches.
 - (c) In an UG class of a reputed engineering college, 70% are boys and 30% are girls; 5% of boys (07Marks) and 3% of the girls are irregular to the classes. What is the probability of a student selected at random is irregular to the classes and what is the probability that the irregular student is a girl?

OR

10 (a) State and prove Bayes's theorem.

- (06 Marks)
- (b) The chance that a doctor will diagonise a disease correctly is 60%. The chance that a patient will (07Marks) die after correct diagonise is 40% and the chance of death by wrong diagonise is 70%. If a patient dies, what is the chance that his disease was correctly diagonised?
- (c) Three students *A*,*B*,*C* write an entrance examination, their chances of passing are 1/2,1/3 and (07Marks) 1/4 respectively. Find the probability that (i) atleast one of them passes (ii) atleast two of them passes (iii) all of them passes.
