Model Question Paper-2 with effect from 2019-20 (CBCS Scheme)

USN \square 18MATDIP41

Fourth Semester B.E.(CBCS) Examination
 Additional Mathematics - II

(Common to all Branches)
Max.Marks: 100
Time: 3 Hrs
Note: Answer any FIVE full questions, choosing at least ONE question from each module.

Module-1

1 (a) Find the rank of the following matrix by applying elementary row transformations

$$
\left[\begin{array}{rrrr}
0 & 1 & -3 & -1 \\
1 & 0 & 1 & 1 \\
3 & 1 & 0 & 2
\end{array}\right] .
$$

(b) Solve the following system of linear equations by Gauss elimination method:
(07Marks)

$$
x+2 y+z=3 ; 2 x+3 y+3 z=10 ; 3 x-y+2 z=13
$$

(c) Find all the eigenvalues and eigenvector corresponding to the smallest eigenvalue of
(07Marks)

$$
\left[\begin{array}{rrr}
2 & 0 & -1 \\
0 & 2 & 0 \\
-1 & 0 & 2
\end{array}\right]
$$

OR

2 (a) Reduce the matrix into its echelon form, and hence find its rank
(06 Marks)

$$
\left[\begin{array}{ccc}
1 & 1 & -1 \\
2 & -3 & 4 \\
3 & -2 & 3
\end{array}\right]
$$

(b) Find all the eigenvalues and eigenvector corresponding to the largest eigenvalue of
(07Marks)

$$
\left[\begin{array}{rrc}
3 & -1 & 1 \\
-1 & 5 & -1 \\
1 & -1 & 3
\end{array}\right]
$$

(c) Solve the system of linear equations $2 x+y+z=7 ; x+3 y+z=10 ; x+y+z=15$ by applying
(07Marks)
Gauss elimination method.

Module-2

3 (a) Find a real root of $x e^{x}-\cos x=0$, correct to three decimal places lying in the interval $(0.5,0.6)$,
(06 Marks) By using Regula-Falsi method.
(b) Use an appropriate interpolation formula to compute $f(6)$ using the following data
(07Marks)

x	1	2	3	4	5
$f(x)$	1	-1	1	-1	1

(c) Evaluate $\int_{0}^{\pi / 2} \sqrt{\sin x} d x$ using Simpson's (1/3) rd rule, taking 10 equal parts.

OR

4 (a) Find a real root of the equation $x \sin x+\cos x=0$, near $x=\pi$ correct to four decimal places, using Newton- Raphson method.
(b) Use an appropriate interpolation formula to compute $f(0.15)$ using the following data:
(06 Marks)

x	0.1	0.2	0.3	0.4	0.5	0.6
$f(x)$	2.68	3.04	3.38	3.68	3.96	4.21

(c) Use Weddle's rule to evaluate $\int_{0}^{1} \frac{x d x}{1+x^{2}}$, by taking seven ordinates.

Module-3

5 (a) Solve : $\left(D^{3}-D^{2}-4 D-4\right) y=0$.
(b) Solve : $\frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+5 y=2 \cosh x$.
(c) Solve : $y^{\prime \prime}-4 y=\cos 2 x$.

OR

6 (a) Solve: $\left(D^{4}+4 D^{3}-5 D^{2}-36 D-36\right) y=0$.
(b) Solve : $y^{\prime \prime}+5 y^{\prime}+6 y=e^{-2 x}$.
(c) Solve: $\left(D^{2}+5 D+6\right) y=\sin x$.
(06 Marks)

Module-4

7 (a) Form the partial differential equation by eliminating the arbitrary function from

$$
z=y^{2}+2 f\left(\frac{1}{x}+\log y\right)
$$

(b) Form the partial differential equation by eliminating the arbitrary constants from

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

(c) Solve $\frac{\partial^{2} z}{\partial y^{2}}=z$, given that when $y=0, z=e^{x}$ and $\frac{\partial z}{\partial y}=e^{-x}$.

OR

8 (a) Form the partial differential equation by eliminating the arbitrary function from

$$
f\left(x^{2}+y^{2}, z-x y\right)=0
$$

(b) Form the partial differential equation by eliminating the arbitrary functions from

$$
z=y f(x)+x \varphi(y)
$$

(c) Solve $\frac{\partial^{2} z}{\partial x \partial y}=e^{-2 y} \cos 3 x$, for which $\frac{\partial z}{\partial y}=0$ when $x=0$ and $z=0$ when $y=0$.

Module-5

9 (a) Define conditional probability. For any two events A and B, prove that $P(A \cap B)=P(A) P(B / A)$.
(b) The probability that 3 students A, B, C solve a problem is $1 / 2,1 / 3,1 / 4$ respectively. If the problem is simultaneously assigned to all of them, what is the probability that the problem is solved?
(c) An office has 4 secretaries handling respectively $20 \%, 60 \%, 15 \%$ and 5% of the files of all government reports. The probability that they misfile such reports is respectively, $0.05,0.1,0.1$ and 0.05 . Find the probability that the misfiled report can be blamed on the first secretary.

OR

10 (a) State and prove Bayes's theorem.
(b) Three major parties A, B, C are contesting for power in the elections of a state and the chance of their winning election is in the ratio1:3:5. The parties A, B, C respectively have probabilities of banning the online lottery $2 / 3,1 / 3,3 / 5$. What is the probability that there will be a ban on the online lottery in the state? Also, what is the probability that the ban is from the party C ?
(c) A shooter can hit the target in 3 out of 4 shots and another shooter can hit in 2 out of 3 shots. Find the probability that the target is being hit (i) by only one shooter and (ii) when both of them try.
(06 Marks)
(07Marks)
(07Marks)

