USN \square

Third Semester B.E.Degree Examination
 Additional Mathematics-I

(Common to all Branches)
Max.Marks: 100
Time: 3 Hrs
Note: Answer any FIVE full questions, choosing at least ONE question from each module.

Module-I

1. (a) Define dot product between two vectors A and B. Find the sine of the angle between $\vec{A}=2 \vec{i}-2 \vec{j}+\vec{k}$ and $\vec{B}=2 \vec{i}-2 \vec{j}+\vec{k}$.
(b) Express $\sqrt{5}+2 i$ in the polar form and hence find its modulus and amplitude.
(c) Find the real part of $\frac{1}{1+\cos \theta+i \sin \theta}$

OR

2. (a) Show that $(1+\cos \theta+i \sin \theta)^{n}+(1+\cos \theta-i \sin \theta)^{n}=2^{n+1} \cos ^{n}(\theta / 2) \cos (n \theta / 2)$
(08 Marks)
(b) If $\vec{A}=2 \vec{i}-2 \vec{j}+\vec{k}$ and $\vec{B}=2 \vec{i}-2 \vec{j}+\vec{k}$, show that $(\vec{A}+\vec{B})$ and $(\vec{A}-\vec{B})$ are orthogonal.
(c) Find the value of λ, so that the vectors $\vec{A}=3 \vec{i}+5 \vec{j}-3 \vec{k}, \vec{B}=\vec{i}+\lambda \vec{j}+2 \vec{k}$ and $\vec{C}=2 \vec{i}-2 \vec{j}+\vec{k}$ are coplanar.

Module-II

3. (a) If $x=\tan (\log y)$, prove that $\left(1+x^{2}\right) y_{n+1}+(2 n x-1) y_{n}+n(n-1) y_{n-1}=0$.
(08 Marks)
(b) Find the angle between the curves $r^{n}=a^{n} \cos n \theta$ and $r^{n}=b^{n} \sin n \theta$.
(06 Marks)
(c) Using Euler's theorem, prove that $x u_{x}+y u_{y}=\sin 2 u$, where $u=\tan ^{-1}\left[\left(x^{3}+y^{3}\right) /(x+y)\right]$.

OR

4. (a) Obtain the Maclaurin's series expansion of $\log \sec x$ up to the terms containing x^{6}.
(08 Marks)
(b) Find the pedal equation of the following curve : $r(1+\cos \theta)=2 a$.
(06 Marks)
(c) If $u=f(x-y, y-z, z-x)$, show that $u_{x}+u_{y}+u_{z}=0$

Module-III

(a) Obtain a reduction formula for $\int_{0}^{\pi / 2} \sin ^{n} x d x,(n>0)$.
(08 Marks)
(b) Evaluate: $\int_{0}^{\infty} \frac{x^{2} d x}{\left(1+x^{2}\right)^{3}}$
(c) Evaluate: $\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z}(x+y+z) d y d x d z$
(06 Marks)
(06 Marks)

OR

6. (a) Obtain a reduction formula for $\int_{0}^{\pi / 2} \cos ^{n} x d x,(n>0)$
(08 Marks)
(b) Evaluate : $\int_{0}^{2 a} x^{3} \sqrt{2 a x-x^{2}} d x$
(06 Marks)
(c) Evaluate $\iint_{R} x y d x d y$ where R is the first quadrant of the circle $x^{2}+y^{2}=a^{2}, x \geq 0, y \geq 0$.

Module-IV

7. (a) A particle moves along a curve $x=e^{-t}, y=2 \cos 3 t, z=2 \sin 3 t$ where t is the time variable. Determine the components of velocity and acceleration vectors at $t=0$ in the direction of $\vec{i}+\vec{j}+\vec{k}$.
(08 Marks)
(b) Find the directional derivative of $\phi=x y^{2}+y z^{3}$ at the point $(2,1,-1)$ in the direction of the vector $\vec{i}+2 \vec{j}+2 \vec{k}$.
(06 Marks)
(c) Find the values of the constants a, b, c such that $\vec{F}=(x+y+a z) \vec{i}+(b x+2 y-z) \vec{j}+(x+c y+2 z) \vec{k}$ is irrotational.
(06 Marks)

OR

8. (a) If $\vec{F}=(x+y+z) \vec{i}+\vec{j}-(x+y) \vec{k}$, show that $\vec{F} \times \operatorname{curl} \vec{F}=0$
(08 Marks)
(b) If $\phi(x, y, z)=x^{3}+y^{3}+z^{3}-3 x y z$, find $\nabla \phi \&|\nabla \phi|$ at $(1,-1,2)$
(c) Show that vector field $\vec{F}=\left[(x i+y j) /\left(x^{2}+y^{2}\right)\right]$ is solenoidal.

Module-V

9. (a) Solve: $\left(x^{2}+2 x y-y^{2}\right) d x+\left(y^{2}+2 x y-x^{2}\right) d y=0$
(08 Marks)
(b) Solve: $[y(1+1 / x)+\cos y] d x+[x+\log x-x \sin y] d y=0$
(06 Marks)
(c) Solve: $\left(1+y^{2}\right) d x=\left(\tan ^{-1} y-x\right) d y$

OR

10. (a) Solve: $(x+2 y-3) d x-(2 x+y-3) d y=0$
(08 Marks)
(b) Solve: $\left\lfloor y^{2} e^{x y^{2}}+4 x^{3}\right\rfloor d x+\left\lfloor 2 x y e^{x y^{2}}-3 y^{2}\right\rfloor d y=0$
(c) Solve: $\left(x^{3} \cos ^{2} y-x \sin 2 y\right) d x=d y$
