Model Question Paper- I with effect from 2020-21 (CBCS Scheme)

USN

Sixth Semester B.E.(CBCS) Examination ADVANCED LINEAR ALGEBRA (Open Elective)

Time: 3 Hrs
Max.Marks: 100
Note: Answer any FIVE full questions, choosing at least ONE question from each module.

Module-I

1.(a) Test for consistency and solve the system of linear equations :
(07 Marks)
$x+2 y+z=3, \quad 2 x+3 y+3 z=10$ and $3 x-y+2 z=13$.
(b) Solve the following system of linear equations by LU decomposition method:
$3 x+4 y+5 z=18, \quad 2 x-y+8 z=13$ and $5 x-2 y+7 z=20$.
(07 Marks)
(c) Define a subspace. Prove that the intersection of two subspaces of a vector space $\mathrm{V}(\mathrm{F})$ is a subspace of $V(F)$.
(06 Marks)

OR

2. (a) Investigate the values of λ and μ such that the system of equations:
(07 Marks)
$x+y+z=6, \quad x+2 y+3 z=10$ and $x+2 y+\lambda z=\mu$ may have
i) unique solution, ii) infinite solution and iii) no solution.
(b) Find the co-ordinate vector of $(10,5,0)$ relative to the vectors $(1,-1,1),(0,1,2)$ and $(3,0,-1)$.
(07 Marks)
(c) Prove that the set $W=\{(x, y, z) / x-3 y+4 z=0\}$ of the vector $\operatorname{space}_{3}(R)$ is a subspace of $V_{3}(R)$.
(06 Marks)

Module-II

3.(a) Prove that $T: R^{3} \rightarrow R^{3}$ be defined by $T(a, b, c)=(3 a, a-b, 2 a+b+c)$ is a linear transformation.
(07 Marks)
(b) Let $\mathrm{T}: \mathrm{R}^{2} \rightarrow \mathrm{R}^{2}$ be a linear transformation such that $\mathrm{T}(2,3)=(1,0)$ and $\mathrm{T}(3,2)=(1,-1)$.
(07 Marks)
Find the matrix representation of T .
(c) Let $T: R^{3} \rightarrow R^{3}$ be a linear transformation defined by $T(x, y, z)=(x+2 y-z, y+z, x+y-2 z)$. Find the basis and dimension of i) image of T and ii) kernel of T .
(06 Marks)

OR

4.(a) Find the matrix of the linear transformation $T: V_{2}(R) \rightarrow V_{3}(R)$ defined by $T(x, y)=(x+y, x, 3 x-y)$ with respect to $\mathrm{B}_{1}=\{(1,1),(3,1)\}, \mathrm{B}_{2}=\{(1,1,1),(1,1,1),(1,0,0)\}$.
(07 Marks)
(b) Let $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ be a linear transformation defined by $\mathrm{T}(\mathrm{x}, \mathrm{y}, \mathrm{z})=(\mathrm{x}+\mathrm{y}, \mathrm{x}-\mathrm{y}, 2 \mathrm{x}+\mathrm{z})$. Find the range, null space, rank and nullity of T.
(07 Marks)
(c) Let $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ be a linear transformation. Then prove that $\mathrm{R}(\mathrm{T})$ is a subspace of W .
(06 Marks)

Module-III

5.(a) Define an inner product space. If V is an inner product space, then for any vectors α, β in V prove that $\|\alpha+\beta\| \leq\|\alpha\|+\|\beta\|$.
(07Marks)
(b) Prove that an orthogonal set of non zero vectors is linearly independent.
(07 Marks)
(c) Apply the Gram-Schmidt orthogonalization process to find an orthonormal basis for the subspace of R^{4} spanned by the vectors $\mathrm{v}_{1}=(1,1,1,1), \mathrm{v}_{2}=(1,2,4,5), \mathrm{v}_{3}=(1,-3,-4,-2)$.

OR

6 (a)Find the QR decomposition of the matrix
(07 Marks)

$$
\mathrm{A}=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

(07 Marks)
(b) Prove that every finite dimensional inner product space has an orthonormal basis.
(c) If V is an inner product space, then for any vectors α, β in V and any scalar c , prove that
i) $\|c \alpha\|=c\|\alpha\|$
ii) $\|\langle\alpha, \beta\rangle\|=\|\alpha\|\|\beta\|$.
(06 Marks)

Module-IV

7.(a) Find the singular value decomposition of $\mathrm{A}=\left(\begin{array}{ccc}4 & 11 & 14 \\ 8 & 7 & -2\end{array}\right)$
(07 marks)
(b) Find the minimum and maximum values of $Q(x)=9 x^{2}+4 y^{2}+3 z^{2}$ subject to the constraint $X^{T} X=1$.
(07 marks)
(c) Diagonalize the matrix A, given that $A=\left[\begin{array}{cc}-19 & 7 \\ -42 & 16\end{array}\right]$
(06marks)

OR

8.(a) Find the singular value decomposition of $\mathrm{A}=\left(\begin{array}{rr}1 & -1 \\ -2 & 2 \\ 2 & -2\end{array}\right)$
(07 marks)
(b) Orthogonally diagonalize the matrix $\mathrm{A}=\left(\begin{array}{ccc}3 & -2 & 4 \\ -2 & 6 & 2 \\ 4 & 2 & 3\end{array}\right)$
(07 marks)
(c) Make a change of variable $X=P Y$ that transforms the quadratic form $x_{1}{ }^{2}-8 x_{1}{ }^{2} x_{2}{ }^{2}-5 x_{2}{ }^{2}$ in to a quadratic form with no cross product term.
(06 marks)

Module-V

9.The following is a view of a square with vertices $(0,0,0),(1,0,0),(1,1,0)$, and ($0,1,0)$.

$$
\begin{array}{lllll}
-2 & -1 & 0 & 1 & 2
\end{array}
$$

(a) What is the coordinate matrix of view?
(b) Find the coordinate matrix of view after it is scaled by a factor 1.5 in the x-direction and 0.5 in the y-direction. Draw the resultant scaled view.
(c) What is the coordinate matrix of view after it is translated by the vector $(-2,-3,1)^{\mathrm{T}}$? Sketch the translated view.
(d) Find the coordinate matrix of view after it is rotated through an angle of -30° about the z-axis. Draw the rotated view.

OR

10. Write down the 3×3 matrix for the following triangle graph. The first row has -1 in column 1 and +1 in column 2. What vectors ($\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}$) are in its null space .How do you know that $(1,0,0)$ is not in its row space.
(20 marks)

