Subject: Power System Analysis – 2

Model Question Paper

Q. No.	Question	Marks
1. a	Define a primitive network. Formulate Y_{Bus} by singular transformation method.	8
b.	In the power system shown in Fig. Q1(b), line 1-2 has the series impedance of (0.04+j0.12) pu with negligible line charging. The generation and load data is given in the table. Bus No. Type Generation (pu) Load (pu) 1 Slack - - 2 PV 0.3 - 0.6 0.2	8
	The slack bus voltage is $(1+j0)$. The voltage magnitude at bus 2 is to be maintained at 1.05 pu and the generator at this bus has Q-generation limits between 0 and 0.5 pu. With $(1+j0)$ pu initial voltage at bus 2, determine its voltage at the end of first iteration, using GS load flow model.	
	Fig. Q1(b)	
2	Or	0
	Develop the Gauss-Seidel load flow model for a power system with a slack bus and $(n-1)$ number of PQ buses. Write the flow chart of the algorithm. Determine Y _{Bus} by singular transformation for the system with data as	8
	below: $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0
3.a	Derive expressions for diagonal elements of NR jacobian submatrices in polar form.	8
b.	In a two bus system shown in Fig. Q3(b), bus 1 is slack bus with $V_1=1.0 \ge 0$ pu and bus 2 is a load bus with P = 100 MW, Q = 50 MVar. The line impedance is (0.12+j0.16) pu on a base of 100 MVA. Using NR load flow method compute $ V_2 $ and δ_2 after one iteration.	8
	Fig O2(h)	
	Fig. Q3(b) Or	
4.a	Explain the algorithm with fast decoupled load flow analysis, clearly stating all the assumptions mad.	8
b.	Explain how the voltage profile is controlled in an interconnected power system (i) by adjusting generator excitation, (ii) by VAR generators	8
5.a.	Draw and explain the following: i) Input-Output curve ii) Cost Curve	8

	iii) Incremental cost curve	
	iv) Heat rate curve	
b.	The incremental fuel costs in Rs/MWh for a plant consisting of two units	8
0.	are	0
	$\frac{dF_1}{dP_{G1}} = 0.1P_{G1} + 20, \frac{dF_2}{dP_{G2}} = 0.12P_{G2} + 15.$	
	Assume that both units are operating at all times.	
	Determine	
	i) The most economical division of load between the generators for a constant load of 300 MW.	
	ii) The saving in Rs./ day obtained compared to equal load sharing between the	
	Or	
6.a.	Derive the coordination equations for economic load dispatch in a thermal	8
	power system with the consideration of transmission losses.	
b.	Describe dynamic programming method for computation of optimal Unit	8
	Commitment.	
7.a	Write a flow chart for the optimal load flow solution.	8
b.	Explain the state space method used for power system reliability evaluation.	8
	Explain Loss Of Load Probability (LOLP)	
	Or	
8.a.	Discuss the optimal scheduling of hydrothermal system.	8
b.	Explain power system security assessment and modelling for contingency analysis	8
9.a.	Derive the generalized algorithm for finding the elements of bus impedance matrix when a link is added.	8
b.	Discuss the steps for determining multimachine stability.	8
	Or	
10.a.	Explain point by point method of solving swing equation.	8
b.	Form the Z_{Bus} for the power system shown in Fig. Q10 (b) using Z_{Bus}	8
	building algorithm. Select ground node as reference. The line reactances are in pu.	-
	() jo.25 jo.05 3j1.05 3j1.25	

Dr. R V Parimala Prof. &HoD, Dept. of EEE BNMIT, Bengaluru