Model Question Paper
 Fifth Semester B.E.(CBCS) Examination
 Signals and Systems

(Common to all Branches)
Time: 3 Hrs
Max.Marks: 80

Note: Answer any FIVE full questions, choosing at least ONE question from each module

Module-I

1. a. Distinguish between i) Even and Odd Signals
ii) Periodic and nonperiodic signals
(04 Marks)
b. Determine whether the following signals are periodic, if periodic determine the fundamental period. i) $x(t)=\cos 2 t+\sin 3 t$ ii) $x[n]=\sin 2 n$
(04 Marks)
c. Sketch the following signal for $x(t)$ is shown in figure.

$$
\text { i) } x(3 t+2) \text { ii) } x(2(t+2) \text { iii) } x(-2 t-1) \text { iv) } x(-2 t+3) \quad \text { (08 Marks) }
$$

2. a. Find total energy of the following signals
i) $\mathrm{x}(\mathrm{t})=\mathrm{A} \quad ;-\mathrm{T} / 2<\mathrm{t}<\mathrm{T} / 2$ $=0 \quad$; Otherwise
ii)
$x(t)= \begin{cases}\frac{1}{2}[\cos (\omega t)+1] & \frac{-\pi}{\omega} \leq t \leq \pi / \omega \\ 0 & \text { otherwise }\end{cases}$
(08 Marks)
b. Determine whether the system $\mathrm{y}(\mathrm{t})=\mathrm{x}\left(\mathrm{n}^{2}\right)$ is i) Linear ii) Time-invarient iii) Memory iv) Causal v) Stable

Module-II

3. a. Consider an LTI system with input $x(n) \&$ unit impulse response $h(n)$ given below, Compute $y(n) . x(n)=2^{n} u(-n) ; \& h(n)=u(n)$
(08 Marks)
b. Find the step response for the LTI system represented by impulse response
i) $h(n)=u(n)$
ii) $h(n)=(1 / 2)^{n} u(n)$
(4 Marks)
c. . Determine stability \& causality of the following
i) $h(n)=(1 / 2)^{n} u(n)$
ii) $h(t)=e^{-3 t} u(t-1)$
(4 Marks)
4. a. Find Forced response of the following system given by

$$
\begin{equation*}
y(n)-5 / 6 y(n-1)+1 / 6 y(n-2)=x(n) \quad \text { where } x(n)=2^{n} \tag{10Marks}
\end{equation*}
$$

b. Draw direct form-I \& II structures for the system described by the differential equation.

$$
\frac{d^{3} y(t)}{d t^{3}}+\frac{2 d y(t)}{d t}+3 y(t)=x(t)+\frac{3 d x(t)}{d t}
$$

Module-III

5. State \& prove the following properties of FT. i) Time shifting property ii) parseval's theorem.
(10Marks)
b. Obtain the fourier transform of $x(t)=t e^{-a t} u(t)$
6. a. Find the fourier transform of rectangular pulse shown below

$$
x(\omega)=1 /(a+j \omega)^{2}
$$

b. Find the frequency response \& impulse response of the system described by differential equation.
(08 Marks)

$$
\mathrm{dy}(\mathrm{t}) / \mathrm{dt}+8 \mathrm{y}(\mathrm{t})=\mathrm{x}(\mathrm{t})
$$

Module-IV

7. a. Obtain the DTFT of the signal $x[n]=2^{n} u(-n)$
(06 Marks)
b. State \& prove the following properties of DTFT. i) Convolution property ii) Frequency differentiation.
8. a. Using DTFT find the total solution to the difference equation for discrete time
signal. $\quad 5 y(n+2)-6 y(n+1)+y(n)=0.8 u(n)$
(08 Marks)
b. Find the fourier transform of the following.

$$
\begin{aligned}
\mathrm{x}(\mathrm{n}) & =1 \quad ;-2 \leq \mathrm{n} \leq 2 \\
& =0 \quad ; \text { Otherwise }
\end{aligned}
$$

(08 Marks)

Module-V

9. a. Find the Z-transform of the following
i) $x(n)=2^{n} u(-n-1)$
ii) $x(n)=(3) 2^{n} u(-n)$
(08 Marks)
b. Prove the following properties of Z-transform i) Linearity ii) Initial value theorem
(08 Marks)
10. a. Find Inverse Z -transform of the following using partial fraction expansion method.

$$
X(z)=\left(1+2 z^{-1}+z^{-2}\right) /\left(1-1.5 z^{-1}+0.5 z^{-2}\right)
$$

(08 Marks)
b. Solve the following difference equation using unilateral Z-transform $\mathrm{Y}(\mathrm{n})+3 \mathrm{y}(\mathrm{n}-1)=\mathrm{x}(\mathrm{n})$ with $\mathrm{x}(\mathrm{n})=\mathrm{u}(\mathrm{n})$ and the initial condition $\mathrm{y}(-1)=1$
(08 Marks)

