Model Question Paper-1 with effect from 2018-19 (CBCS Scheme)

USN											
-----	--	--	--	--	--	--	--	--	--	--	--

Time: 3 Hrs

First Semester B.E. Degree Examination Calculus and Linear Algebra

(Common to all Branches)

Max.Marks: 100

18MAT11

Note: Answer any FIVE full questions, choosing at least ONE question from each module. <u>Module-1</u>

1. (a) With usual notation, prove that $1/p^2 = 1/r^2 + 1/r^4 [dr/d\theta]^2$. (06 Marks) (b) For the cardiod : $r = a(1 - \cos \theta)$, show that ρ^2/r is constant. (06 Marks) (c) Show that the evolute of the parabola $y^2 = 4ax$ is $27ay^2 = 4(x - 2a)^3$. (08 Marks) OR

- 2. (a) Find the pedal equation of the curve : $r^m = a^m (\cos m\theta + \sin m\theta)$. (06 Marks) (b) Show that the radius of curvature for the catenary $y = c \cosh(x/c)$ at any point (x, y) varies
 - as square of the ordinate at that point. (06 Marks) (02 Marks)
 - (c) Show that the angle between the pair of curves: $r = a \log \theta \& r = a / \log \theta$ is $2 \tan^{-1} e$. (08 Marks)

Module-2

3. (a) Using Maclaurin's series, prove that $\sqrt{1 + \sin 2x} = 1 + x - \frac{x^2}{2} - \frac{x^3}{3} + \frac{x^4}{24} + \dots$ (06 Marks)

(b) Evaluate (i)
$$\lim_{x \to 0} \left[\left(a^x + b^x + c^x \right) / 3 \right]^{1/x}$$
 (ii) $\lim_{x \to \pi/2} \left[\cos x \right]^{(\pi/2) - x}$. (07 Marks)

(c) Examine the function $f(x, y) = x^3 + y^3 - 3x - 12y + 20$ for its extreme values. (07 Marks)

OR

- 4. (a) Find du/dt at t = 0, if $u = e^{x^2 + y^2 + z^2}$ and $x = t^2 + 1$, $y = t \cos t$, $z = \sin t$. (06 Marks) (b) If u = yz/x, v = zx/y, w = xy/z, then show that $\partial(u, v, w)/\partial(x, y, z) = 4$. (07 Marks)
 - (c) Find the maximum and minimum distances of the point (1,2,3) from the sphere $x^2 + y^2 + z^2 = 56$. (07 Marks)

Module-3

5. (a) Evaluate : $\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z} (x+y+z) dy dx dz$

(b) Find by double integration the area lying between the circle $x^2 + y^2 = a^2$ and the line x + y = a in the first quadrant. (06 Marks)

(c) Show that
$$\int_{0}^{\pi/2} \frac{d\theta}{\sqrt{\sin\theta}} \times \int_{0}^{\pi/2} \sqrt{\sin\theta} d\theta = \pi$$
 (07 Marks)

6.	(a) Change the order of integration and hence evaluate $\int_{0}^{1} \int_{x^2}^{2-x} xy dx dy$.	(06 Marks)
	(b) A pyramid is bounded by three coordinate planes and the plane $x + 2y + 3z = 6$.	
	Compute the volume by double integration.	(07 Marks)
	(c) Evaluate: $\int_{0}^{1} x^{3/2} (1-x)^{1/2} dx$, by expressing in terms beta & gamma functions.	(07 Marks)
	Module-4	
7.	(a) If the temperature of the air is $30^{\circ}C$ and a metal ball cools from $100^{\circ}C$ to $70^{\circ}C$ in 15	
	minutes, find how long will it take for the metal ball to reach a temperature of $40^{\circ}C$.	(06 Marks)
	(b) Find the orthogonal trajectories of the family of curves $\left[x^2/a^2\right]dx + \left[y^2/(b^2 + \lambda^2)\right]dy = 1$,	· · · ·
	where λ is a parameter.	(07 Marks)
	(c) Solve: $\left[y^4 + 2y\right]dx + \left[xy^3 + 2y^4 - 4x\right]dy = 0.$	(07 Marks)
	OR	
8.	(a) The current i in an electrical circuit containing an inductance L and a resistance R in series	
	and, acted upon an e.m.f. $E \sin \omega t$ satisfies the differential equation $L[di/dt] + Ri = E \sin \omega t$.	
	Find the value of the current at any time <i>t</i> , if initially there is no current in the circuit.	(06 Marks)
	(b) Solve: $dy + [x \sin 2y - x^3 \cos^2 y] dx = 0$	(07 Marks)
	(c) Find the general and singular solution of $[px - y][x - py] = 2p$, by using the substitution	
	$x^2 = u \& y^2 = v$	(07 Marks)

Module-5

		1	3 11	-1	2	by applying elementary row operations.	(06 Marks)
9.	(a) Find the rank of the matrix	2	-5	3	1		
		4	1	1	5_		

(b) Using Rayleigh's power method, find largest eigen value and eigen vector of the matrix:

 $\begin{bmatrix} 25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4 \end{bmatrix}$ by taking $X^{(0)} = [1,0,0]^T$ as initial eigen vector. (Perform 7 iterations) (07 Marks)

(c) Use Gauss-Jordan method solve the system of equations: x+4y-z=-5; x+y-6z=-12; 3x-y-z=4 (07 Marks) OR

10. (a) For what values λ and μ the system of equations x + 2y + 3z = 6; x + 3y + 5z = 9; $2x + 5y + \lambda z = \mu$, has (a) no solution (b) a unique solution and (iii) infinite number of solutions. (06 Marks)

(b) Reduce the matrix
$$A = \begin{bmatrix} -19 & 7 \\ -42 & 16 \end{bmatrix}$$
 into the diagonal form. (07 Marks)

(c) Solve the system of equations 7x + 52y + 13z = 104; 3x + 8y + 29z = 71; 83x + 11y - 4z = 95, using Gauss-Seidel method. (Carry out 4 iterations). (07 Marks)
