Model Question Paper-2 with effect from 2018-19 (CBCS Scheme)

USN						
-----	--	--	--	--	--	--

First Semester B.E. Degree Examination Calculus and Linear Algebra

(Common to all Branches)

Time: 3 Hrs

Max.Marks: 100

Note: Answer any FIVE full questions, choosing at least ONE question from each module.

Module-1

1. (a) With usual notation, prove that $\tan \phi = r[d\theta/dr]$.(06 Marks)(b) Find the radius of curvature at the point (3a,3a) on the curve $x^3 + y^3 = 3axy$.(06 Marks)(c) Show that the evolute of the ellipse: $x^2/a^2 + y^2/b^2 = 1$ is $(ax)^{2/3} + (by)^{2/3} = (a^2 - b^2)^{2/3}$ (08 Marks)

OR

- 2. (a) Find the pedal equation of the curve : $l/r = 1 + e \cos \theta$. (06 Marks)
 - (b) Find the radius of curvature for the curve $\theta = \left[\sqrt{r^2 a^2}/a\right] + \cos^{-1}[a/r]$ at any point on it. (06 Marks)
 - (c) Show that the angle between the pair of curves: $r^2 \sin 2\theta = 4 \& r^2 = 16 \sin 2\theta$ is $\pi/3$. (08 Marks)

Module-2

3. (a) Using Maclaurin's series, prove that
$$\log(\sec x + \tan x) = x + \frac{x^3}{6} + \frac{x^5}{24} + \dots$$
 (06 Marks)

(b) Evaluate (i)
$$\lim_{x \to a} [2 - (x/a)]^{\tan\left(\frac{\pi x}{2a}\right)}$$
 (ii) $\lim_{x \to 0} [(1/x)]^{2\sin x}$ (07 Marks)

(c) Examine the function $f(x, y) = 2(x^2 - y^2) - x^4 + y^4$ for its extreme values. (07 Marks)

OR

4. (a) If
$$u = f(2x - 3y, 3y - 4z, 4z - 2x)$$
, show that $(1/2)u_x + (1/3)u_y + (1/4)u_z = 0$ (06 Marks)

(b) If $x = r \sin \theta \cos \phi$, $y = r \sin \theta \sin \phi$, $z = r \cos \theta$, show that $J[(x, y, z)/(r, \theta, \phi)] = r^2 \sin \theta$. (07 Marks)

(c) A rectangular box, open at the top, is to have a volume of 32 cubic ft. Find the dimension of the box requiring least material for its construction.(07 Marks)

Module-3

5. (a) Evaluate
$$\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2+y^2)} dx dy$$
 by changing into polar coordinates. (06 Marks)

(b) Find the volume the tetrahedron bounded by the plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ and the coordinate planes,

using double integration.

 $\infty \infty$

(c) Show that
$$\int_{0}^{\infty} \frac{e^{-x} dx}{\sqrt{x}} \times \int_{0}^{\infty} \sqrt{x} e^{-x^{2}} dx = \frac{\pi}{2\sqrt{2}}$$
 (07 Marks)

Page 1 of 2

(07 Marks)

18MAT11

OR

- 6. (a) Evaluate: $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}} \frac{dxdydz}{\sqrt{1-x^{2}-v^{2}-z^{2}}}$ (06 Marks)
 - (b) Find by double integration, the centre of gravity of the area of the cardioid: $r = a(1 + \cos \theta)$. (07 Marks)

(c) With usual notations, show that
$$\int_{0}^{1} \frac{x^{m-1} + x^{n-1}}{(1+x)^{m+n}} dx = \beta(m, n).$$
 (07 Marks)

Module-4

7. (a) A copper ball originally at $80^{\circ}C$ cools down to $60^{\circ}C$ in 20 minutes, if the temperature of the air being $40^{\circ}C$. What will be the temperature of the ball after 40 minutes from the original? (06 Marks)

(b) Find the orthogonal trajectories of the family of curves $r^n \cos n\theta = a^n$, where *a* is a parameter. (07 Marks)

(c) Solve:
$$[3x^2y^4 + 2xy]dx + [2x^3y^3 - x^2]dy = 0.$$
 (07 Marks)

OR

8. (a) Solve the differential equation $L[di/dt] + Ri = 200 \sin 300t$, when L = 0.05 & R = 100 and find the value of the current *i* at any time *t*, if initially there is no current in the circuit. What value does *i* approach after a long time. (06 Marks) (b) Solve : $r\sin\theta - r^2 d\theta - [\cos\theta] dr = 0.$ (07 Marks)

(c) Solve:
$$p^4 - [x + 2y + 1]p^3 + [x + 2y + 2xy]p^2 - 2xyp = 0$$
, where $p = dy/dx$. (07 Marks)

Module-5

9. (a) For what values λ and μ the system of equations x + y + z = 6; x + 2y + 3z = 10; $x + 2y + \lambda z = \mu$, has (a) no solution (b) a unique solution and (iii) infinite number of solutions. (06 Marks)

(b) Using Rayleigh's power method, find largest eigen value and eigen vector of the matrix:

$$\begin{array}{ccc} 4 & 1 & -1 \\ 2 & 3 & -1 \\ -2 & 1 & 5 \end{array}$$
 by taking $X^{(0)} = \begin{bmatrix} 1, 0, 0 \end{bmatrix}^T$ as initial eigen vector. (Perform 7 iterations) (07 Marks)

(c) Use Gauss-Jordan method solve the system of equations: 83x + 11y - 4z = 95; 7x + 52y + 13z = 104; 3x + 8y + 29z = 71(07 Marks)

10. (a) Find the rank of the matrix $\begin{bmatrix} 4 & 1 & -1 \\ 2 & 3 & -1 \\ -2 & 1 & 5 \end{bmatrix}$ by applying elementary row operations. (b) Reduce the matrix $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$ into the diagonal form. (06 Marks)

- (06 Marks)
- (c) Solve the system of equations 2x 3y + 20z = 25; 20x + y 2z = 17; 3x + 20y z = -18, (07 Marks) using Gauss-Seidel method. (Carry out 4 iterations).