
VTU E-LEARNING

Software Engineering
[15CS42]

A Course By:

Prof.Padmashree T
Prof. Arun Kumar Khannur

Prof. Ramasesha
Prof. G.N.Srinivasan

 1

Contents
Software Engineering.. 4

Module-1:Introduction .. 4

What is software? .. 4

What is Software Engineering?... 4

Why is software engineering required? .. 4

Software process activities .. 6

Case studies ... 7

Software Processes .. 8

Requirements engineering process.. 9

Software design and implementation .. 10

Software validation ... 11

Software Evolution ... 13

Software Process Model ... 13

Software specification ... 14

Models ... 14

Requirements Engineering .. 18

Module 2 :System Models .. 35

Introduction ... 35

What is a Model .. 35

System Modeling .. 35

Why Modeling .. 36

Types of Models ... 37

How to represent a Model ... 37

UML Diagram Types .. 37

Universal Modeling Language .. 38

System Model Representation .. 39

Context Models ... 39

Process Models ... 40

Interaction Models .. 41

Sequence Models .. 43

 2

Structural Models .. 44

Class Diagrams ... 45

Behavioral Models .. 47

Event-driven Modeling ... 48

State Machine Models ... 49

Model-driven Engineering .. 51

Agile Methods and MDA .. 52

Design and Implementation .. 54

Introduction ... 54

Design and Implementation .. 56

Design Patterns ... 63

Types of Design Patterns ... Error! Bookmark not defined.

Creational Design Patterns .. 65

Software Implementation .. 68

Implementation Process .. 73

Module 3: Agile Software Development………………………………………………...75

Agile Model…………………………………………………………………….. 77

Plan-Driven and Agile Development…………………………………………….79

Agile Methods: SCRUM Approach……………………………………………...85

Scaling Agile Methods…………………………………………………………..95

Summary…………………………………………………………………………97

Module 4: Software Testing……………………………………………………………...98

Software Quality Control- Inspection and Testing………………………………98

Verification & Validation techniques……………………………..……………102

Inspection Process………………………………………………………..…….105

Testing Process………………………………………………………..………..111

 3

Software Project Management………………………………………………….115

Project Scheduling………………………………………………………..…….119

Project Costing and estimation…………………………………………………123

Software metrics………………………………………………………………..128

 4

Software Engineering
(15CS42)

Module-1:Introduction

What is software?

A program is a set of instructions that performs a specific task. Software is a set of

programs that accomplish a collective functionality.

Properties of software differ from the properties of physical constructs. The abstract and

intangible nature of the software makes it different. Software could be complex, difficult

to understand and expensive to change depending on the type of software being

developed. Depending on the context of its operation different types of software require

different approaches for development. It is also possible that software can fail. The

failure of software could be due to:

 1) Increase in demand and

 2) Low expectation

What is Software Engineering?

Software Engineering is an engineering discipline that involves the education of building

software using appropriate theories and methods to solve problems bearing in mind

organizational and financial constraints. While doing so, all aspects of software

production are considered and not just technical process of development. Also, project

management and the development of tools, methods etc. to support software production

should also be considered.

Why is software engineering required?

Software engineering principles involve techniques and practices that are used and tested.

It is very much required to be able to produce reliable and trustworthy systems

economically and quickly. It is usually cheaper, in the long run, to use software

engineering methods and techniques for software systems.

Software products can be categorised into:

 5

1. Generic products: These are stand-alone systems that are marketed and sold to any

customer who wishes to buy them.

Examples – PC software such as graphics programs, project management tools; CAD

software; software for specific markets such as appointments systems for dentists.

2. Customized products: Software that is commissioned by a specific customer to meet

their own needs. Such products are generally used to solve a problem in a specific

domain.

Examples – embedded control systems, air traffic control software, traffic monitoring

systems.

The attributes of good software are:

Maintainability –Every software developed should be able to meet the changing needs of

customers.

Dependability and security- Software developed for any situation should not cause

physical or economic damage in the event of system failure. Care should be taken that

malicious users should not be able to access or damage the system.

Efficiency – Depending on the context, the developed software would be evaluated based

on its responsiveness, processing time and memory utilisation

Acceptability- Any software developed should be understandable, usable and compatible

with other systems in the context that work in unison with it.

Software crisis

It is obvious to note that it is very difficult to write efficient software within the right time

specified. This could be due to various reasons such as

1. Heterogeneity –increasingly, systems are required to operate as distributed

systems across networks that include different types of computer and mobile

devices.

2. Business and social change: Business and society are changing incredibly quickly

as emerging economies develop and new technologies become available. They

need to be able to change their existing software and to rapidly develop new

software.

Security and trust also plays a very important role in developing a software module. As

software is intertwined with all aspects of our lives, it is essential that we can trust that

 6

software. Hence appropriate security measures need to be taken to safeguard the

software from external attack.

Software Engineering Ethics

Software development does not just involve technical skills, but also includes ethics. The

team involved in the software development is expected to be honest and ethically

responsible for the software at all times. The following factors need to be addressed

during, before and after software development.

a) Confidentiality: It is the employers‟ responsibility to maintain confidentiality of

the employee information and it is the employee responsibility to maintain the

secrecy and confidentiality involved in the development of software.

b) Competence: It is the ethical responsibility of an employee to accept work that

matches his technical skills. He should be competent enough to carry out the task

assigned to him.

c) IPR (Intellectual Property Rights) – Very tricky, but very essential. It has to be

taken care that when reusing existing components for software development, the

components is available for use as per IPR.

d) Computer misuse- Using the computer provided by the employer for personal use

is misconduct and misuse of the system. Watching videos, playing songs,

browsing social networking sites all mark the misuse of computer.

Software process activities

Any software developed generally follows the following software process activities:

1. Software specification – Involves gathering requirements for the development of

software

2. Software development- involves the implementation of the software.

3. Software validation – verifying if the software developed meets its requirements.

4. Software evolution- making sure that the software can be modified with respect to

change in requirements over time.

 7

Case studies

Insulin pump control system:

This is a system that collects data from a blood sugar sensor and calculates the amount of

insulin required to be injected. Calculation is based on the rate of change of blood sugar

levels. It is programmed to send signals to a micro-pump to deliver the correct dose of

insulin.

This system is considered as a safety-critical system as low blood sugars can lead to brain

malfunctioning, coma and death; and high-blood sugar levels have long-term

consequences such as eye and kidney damage. Hence the software involved should

function just as expected. The architecture of the system is shown in Fig 1.

Fig 1: Architecture of insulin pump control system

High-level requirements specifications can be written as follows

1. The system shall be available to deliver insulin when required.

2. The system shall perform reliably and deliver the correct amount of insulin to

counteract the current level of blood sugar.

3. The system must therefore be designed and implemented to ensure that the system

always meets these requirements.

 8

MHC-PMS (Mental Health Care-Patient Management System)

This is a system which makes use of a centralized database of patient information. When

the local systems have secure network access, they use patient information in the

database but they can download and use local copies of patient records when they are

disconnected. Most mental health patients do not require dedicated hospital treatment but

need to attend specialist clinics. Fig 2 shows the architecture of this system.

Fig 2: Architecture of MHC-PMS

The system is expected to support the following functionality:

1. Individual care management

2. Patient monitoring

3. Administrative reporting

4. Other Aspects that need to be considered other than functional are:

Privacy - patient information is confidential. At most care need to be taken to

protect the privacy of the patient and his illness details.

Safety - prescribe the correct medication to patients.

Software Processes

Software processes are a integral part of software process models. Various process

activities that are carried out during every phase of development form the software

activities. To define technically, A software process is a structured set of activities

required to develop a software system. The activities by and large include:

 9

1. Specification – defining what the system should do;

2. Design and implementation – defining the organization of the system and

implementing the system;

3. Validation – checking that it does what the customer wants;

4. Evolution – changing the system in response to changing customer needs.

Requirements engineering process

Requirements engineering process consists of the following activities:

a) Feasibility study – Technical and Financial feasibility of the project needs to be

considered.

b) Requirements elicitation and analysis – Expectation from the system. The

functionalities that the system is expected to provide.

c) Requirements specification – Defining requirements for every activity performed

by the user or set of users and the expected outcome for each of these activities.

d) Requirements validation – Checking validity of the requirements. Verifying if the

requirements specification contains the functionalities that the system is expected

to perform.

The requirements engineering process is depicted in Fig 3.

Fig 3: Requirements Engineering Process

 10

Once the feasibility study has been completed a feasibility report is generated. It is

observed that the requirements elicitation and analysis, requirements specification and

requirements validation are iterative activities. Based on the analysis it is required to

decide on a system model that needs to be incorporated as a part of requirements

document. The requirements specification activity gives the complete user and system

requirements. The requirements validation process checks if the system performs the

required functions and the requirement specification covers all functionalities to be

provided by the system. The outcome of each activity is an input to the requirements

document.

Software design and implementation

Once the requirements for specific software have been gathered the next activity is to

design and develop the software. These activities could be performed individually or in

parallel depending on the project. Each of these activities have a set of process activities

to be carried out. They are described in detail below:

Software design

The major aim of this phase of software development is to design a software structure

that realises the specification as given by the requirements specification document.

 11

Model of the design process

Fig 4: Design process and activities involved

Design activities involve Architectural design, interface design and component design.

The system architecture and its components need to be defined and specified as a part of

architectural design. The interface design involves the specification and working of

interfaces for enables inter and intra component communication.

Implementation

Translate this structure into an executable program. This requires the use of a

programming language. The choice of programming language is based on the complexity

of the software, the requirements specification of the software, the reusability of

components in the software etc.

Software validation

Validating the software involve checking for conformation of the system to its

specification. This also involves checking and review processes and system testing.

System testing involves executing the system with test cases. The system testing involves

Component testing and acceptance testing. Component testing involves testing of each

component that is used to build the software. The interfaces between the components and

 12

the working of components with the existing system code needs to be tested. The process

activities involved in testing and its iterations are shown in Fig 5. Every individual

component is tested and then system is tested as a whole. Acceptance testing is done to

determine if the system is functioning well in the domain of its application.

Fig 5: Testing activities

The various phases of testing are depicted below in Fig 6. It is a wrong notion that testing

only begins after implementation is complete. As a fact, testing is carried out throughout

the development process. The figure below depicts the outcome of each activity in the

phase of testing.

Testing phases

Fig 6: Phases of testing

As and when the requirements specification is complete the acceptance test plan is also

parallel written because the acceptance testing involves testing of the software in its

working domain. Acceptance test cases are written at this stage. The test plan gets its

 13

input from both requirements specification as well as system specification activities. The

system integration test plan is an output of system specification and design. Workings of

individual components, testing for interfaces between them are all a part of system

integration testing. Once the detailed design is available the sub system integration test

plan is also drafted. Later on the tests are accomplished by making use of the test plan.

This is also called as V-model for test plan driven software development process.

Software Evolution

Fig 7: Activities in software evolution

It is obvious that software is inherently flexible and can change. As requirements change

through changing business circumstances, the software that supports the business must

also evolve and change. Although there has been a demarcation between development

and evolution (maintenance) this is increasingly irrelevant as fewer and fewer systems are

completely new. Fig 7 depicts the activities involved in software evolution. Existing

system is continuously assessed based on the system requirements. If any change has

been proposed the system needs to be modified and a new system is then released. This is

an iterative process and continues until the required outcome has been obtained.

Software Process Model

A software process model is an abstract representation of a process. The process

descriptions may also include:

1. Products, which are the outcomes of a process activity;

 14

2. Roles, which reflect the responsibilities of the people involved in the process.

3. Pre- and post-conditions, which are statements that are true before and after a

process activity has been enacted or a product produced.

Process activities

Processes are inter-leaved sequences of activities with the overall goal of specifying,

designing, implementing and testing a software system. The four basic process activities

of software development are organized differently in different development processes

depending on the application being developed. The activities are: specification,

development, validation and evolution. Each of these is explained in detail in the rest of

the chapters.

Software specification

The specification of the software requires answering the following questions:

a) What are the services required by the software? – To get the functionalities of the

software to be developed.

b) What are the constraints on system operation?- To get the domain information of

the software to be developed.

Models

a) The waterfall model: This is a plan-driven model. There are separate and distinct

phases of specification and development.

b) Incremental development: This is model where the specification, development

and validation are interleaved. Incremental development may follow either plan-

driven approach or agile approach.

c) Reuse-oriented software engineering: The system is assembled from existing

components. This approach also may be plan-driven or agile.

There is no hard rule on the model chosen for developing a particular application. In

practice, most large systems are developed using a process that incorporates elements

from all of these models. Each of these models are described in detail below:

 15

Water fall model

Fig 8: Waterfall model

The phases of Waterfall model depicted in Fig 8 are:

a) Requirements analysis and definition – Gathering the requirements and defining

the functionality of each requirement. This could be done through various

techniques discussed in the next section.

b) System and software design- Design and architecting the software as a whole. The

components involved, the interface between them and other design considerations

are depicted as diagrams. UML diagrams are most frequently used design

representations.

c) Implementation and unit testing – Developing the system and testing each module

one by one as a single unit. Every component developed or reused are

individually tested.

d) Integration and system testing- The components are integrated together and the

system is tested as a whole. The interfaces and communication modules between

the systems are tested here.

 16

e) Operation and maintenance- Once the system is put into use, the functionality of

the system in the operational domain needs to be taken care of. The maintenance

and operation of the system at the client end is important.

Problems with Waterfall model

The main drawback of the waterfall model is the difficulty of accommodating change

after the process is underway. Inflexible partitioning of the project into distinct stages

makes it difficult to respond to changing customer requirements. The waterfall model is

mostly used for large systems engineering projects where a system is developed at

several sites.

Incremental development and delivery

Fig 9: Process in incremental development

Incremental development involves developing the system in increments and evaluating

each increment before proceeding to the development of the next increment. This is the

normal approach used in agile methods. The evaluation of software developed using

incremental approach is done by user/customer proxy.

 17

Incremental delivery involves deploying an increment for use by end-users. This is a

more realistic evaluation about practical use of software. It is difficult to implement for

replacement systems as increments have less functionality than the system being

replaced.

Advantages and disadvantages

Cost of accommodating changing customer requirements is reduced. Customer feedback

on the development is obtained as and when an increment is ready to be released. Rapid

delivery and deployment of useful software can be accomplished by making use of this

approach.

The Problems with this approach is that the process is not visible. Also, it is inevitable

that system structure tends to degrade as new increments are added.

Boehm‟s spiral model

Fig 10: Boehm‟s spiral model

Fig 10 shows the Boehm‟s spiral model. Here the process is represented as a spiral rather

than as a sequence of activities with backtracking. Each loop in the spiral represents a

phase in the process. There are no fixed phases such as specification or design. The loops

in the spiral are chosen depending on what is required. Risks are explicitly assessed and

 18

resolved throughout the process. Spiral model has been very influential in helping people

think about iteration in software processes and introducing the risk-driven approach to

development. In practice, however, the model is rarely used as published for practical

software development.

Sectors of spiral model

The following are the sectors of the spiral model:

1. Objective setting -Specific objectives for the phase are identified.

2. Risk assessment and reduction-Risks are assessed and activities put in place to

reduce the key risks.

3. Development and validation-A development model for the system is chosen

which can be any of the generic models.

4. Planning-The project is reviewed and the next phase of the spiral is planned.

Requirements Engineering

Requirements engineering definition: The process of establishing the services that the

customer requires from a system and the constraints under which it operates and is

developed. The requirements themselves are the descriptions of the system services and

constraints that are generated during the requirements engineering process. A

requirement may range from a high-level abstract statement of a service or of a system

constraint to a detailed mathematical functional specification. This is inevitable as

requirements may serve a dual function as described in the following scenarios:

1) May be the basis for a bid for a contract - therefore must be open to interpretation;

2) May be the basis for the contract itself - therefore must be defined in detail;

3) Both these statements may be called requirements.

Types of requirements:

Requirements can be basically categorised into:

1. User requirement which are statements in natural language plus diagrams of the

services the system provides & its operational constraints. Basically specifies

external system behavior. These are the requirements which are written for

customers

 19

2. Systems Requirements are a structured document setting out detailed descriptions

of the system‟s functions, services & operational constraints. It is necessary that

the systems requirements should reflect accurately what the customer wants and

should also precisely define what should be implemented. This could be a part of

a contract between client and contractor

Example of a user requirement:

In a Library management system, the following functionalities are expected to be present

1. The system will maintain records of all library items including books, serials,

newspapers, magazines, video and audio tapes, reports, collections of

transparencies, computer discs and CD-ROMs.

2. Paper-based library items are stored on open shelves in the library and the system

records their reference position in the library.

3. No item will be removed from the library without the details of its borrowing

being recorded in the system.

4. All items will have a bar code containing a unique reference number by which an

item can be identified within the system.

For the same application the example of a System requirement could be:

1. The system will permit all users to search for an item by title, by author or by

ISBN

2. Staff will be able to search for an item by bar code ref. number

3. Books can be borrowed for 15 days while CD-ROMs, Audio tapes & reports can

be borrowed only for 3 days

4. Borrowed items that are one day overdue in their return will cause a reminder

letter to be printed

5. Librarian should be able to find out details like Number of books & materials

borrowed (on a given day, by a given client)

6. Selected items may be temporarily blocked by authorized staff

 20

Readers of different types of requirements specification

Fig 11: Readers of requirements

Fig 11 shows that the users of User requirements and system requirements are generally

the System end-users, client engineers and system architects. Additionally, Contract

managers and client managers will be using the user requirements and the system

requirements are the guiding path for system developers.

Classification of requirements – Another way

1. Functional requirements: Statements of services the system should provide, how

the system should react to particular inputs and how the system should behave in

particular situations. These requirements may also state what the system should

not do.

2. Non-functional requirements: Constraints on the services or functions offered by

the system such as timing constraints, constraints on the development process,

standards, etc.

3. These requirements often apply to the system as a whole rather than individual

features or services.

 21

4. Domain requirements: Constraints on the system from the domain of operation of

the final system.

Each of the above requirements is explained in detail.

Functional Requirements:

 Describe functionality or system services and depend on the type of software, expected

users and the organization where the software is used. This could be high-level

statements of what the system should do. However, it should describe all the system

services in detail which could include its inputs, its Outputs, exceptions and so on. Such

requirements are generally described in fairly abstract but precise way.

Non-Functional Requirements:

Define system properties and constraints e.g. reliability, response time and storage

occupancy, Security, etc.. Alternatively they may define platform constraints like, I/O

devices capability, data representations. Process requirements may also be specified

mandating a particular CASE system, programming language or development method.

These requirements arise through organizational policies, budget limits, interoperability

needs etc. They may be considered to be more critical than functional requirements

because if these are not met, the system will be useless.

Non-functional requirements can be further classified as shown in Fig 12

 22

Fig 12: Classification of Non-functional requirements

The classification can be described as given below:

1. Product requirements: Requirements which specify that the delivered product

must behave in a particular way e.g. execution speed, reliability, etc.

2. Organisational requirements: Requirements which are a consequence of

organisational policies and procedures e.g. process standards used,

implementation requirements, etc.

3. External requirements: Requirements which arise from factors which are external

to the system and its development process e.g. interoperability requirements,

legislative requirements, etc.

Non-functional requirements may affect the overall architecture of a system rather than

the individual components. For example, to ensure that performance requirements are

met, you may have to organize the system to minimize communications between

components.

A single non-functional requirement, such as a security requirement, may generate a

number of related functional requirements that define system services that are required. It

may also generate requirements that restrict existing requirements.

 23

Metrics for specifying nonfunctional requirements

Since non-functional requirements are equally important for the operation of a software

metrics have been defined to indicate non-functional requirements as a part of

requirements specification document. This is indicated in Table 1.

Table 1 : Metrics for non-functional requirements

Property Measure

Speed Processed transactions/second

User/event response time

Screen refresh time

Size Mbytes

Number of ROM chips

Ease of use Training time

Number of help frames

Reliability Mean time to failure

Probability of unavailability

Rate of failure occurrence

Availability

Robustness Time to restart after failure

Percentage of events causing failure

Probability of data corruption on failure

Portability Percentage of target dependent statements

Number of target systems

The software requirements document

The software requirements document is the official statement of what is required of the

system developers. It should include both a definition of user requirements and a

specification of the system requirements. It is not a design document. As far as possible,

it should be a set of what the system should do rather than how it should do it.

Fig 13 shows the users of a requirements document. The illustration is self-explanatory. It

should be noted that requirements specification is not just for end users or for developers.

It is for all those entities who are involved through out the software development process.

 24

Fig 13: Users of a software requirements document

IEEE structure of a requirements document

 The table below describes the various chapters and its description for a standard

requirements document. This is given by the IEEE. All software do not necessarily

follow this exact structure. But a standard structure tuned to the needs of the application

is required to be followed.

 25

Table 2: The IEEE structure of a requirements document

Chapter Description

Preface This should define the expected readership of the document and describe

its version history, including a rationale for the creation of a new version

and a summary of the changes made in each version.

Introduction This should describe the need for the system. It should briefly describe

the system‟s functions and explain how it will work with other systems.

It should also describe how the system fits into the overall business or

strategic objectives of the organization commissioning the software.

Glossary This should define the technical terms used in the document. You should

not make assumptions about the experience or expertise of the reader.

User requirements

definition

Here, you describe the services provided for the user. The nonfunctional

system requirements should also be described in this section. This

description may use natural language, diagrams, or other notations that

are understandable to customers. Product and process standards that

must be followed should be specified.

System architecture This chapter should present a high-level overview of the anticipated

system architecture, showing the distribution of functions across system

modules. Architectural components that are reused should be

highlighted.

System requirements

specification

This should describe the functional and nonfunctional requirements in

more detail. If necessary, further detail may also be added to the

nonfunctional requirements. Interfaces to other systems may be defined.

System models This might include graphical system models showing the relationships

between the system components and the system and its environment.

Examples of possible models are object models, data-flow models, or

semantic data models.

System evolution This should describe the fundamental assumptions on which the system

is based, and any anticipated changes due to hardware evolution,

changing user needs, and so on. This section is useful for system

designers as it may help them avoid design decisions that would

constrain likely future changes to the system.

Appendices These should provide detailed, specific information that is related to the

application being developed; for example, hardware and database

descriptions. Hardware requirements define the minimal and optimal

configurations for the system. Database requirements define the logical

organization of the data used by the system and the relationships

between data.

 26

Index Several indexes to the document may be included. As well as a normal

alphabetic index, there may be an index of diagrams, an index of

functions, and so on.

Ways of writing system requirements specification

There are different ways of writing requirements specification. Table 3 describes the

notations generally used and its description:

Table 3: Notations for writing requirement specification

Notation Description

Natural

language

The requirements are written using numbered sentences in

natural language. Each sentence should express one

requirement.

Structured

natural

language

The requirements are written in natural language on a standard

form or template. Each field provides information about an

aspect of the requirement.

Design

description

languages

This approach uses a language like a programming language,

but with more abstract features to specify the requirements by

defining an operational model of the system. This approach is

now rarely used although it can be useful for interface

specifications.

Graphical

notations

Graphical models, supplemented by text annotations, are used to

define the functional requirements for the system; UML use

case and sequence diagrams are commonly used.

Mathematical

specifications

These notations are based on mathematical concepts such as

finite-state machines or sets. Although these unambiguous

specifications can reduce the ambiguity in a requirements

document, most customers don‟t understand a formal

specification. They cannot check that it represents what they

want and are reluctant to accept it as a system contract

Tools for Specifying System Requirements

This section deals with the ways to write requirements specification.

1. Structured language: A language with constructs similar to programming

Example: System Requirements for Address book

 27

Case : 1

 List Option selected

 Show first 3 addresses

 If down arrow pressed

 scroll the addresses

 else

 If any “Alpha key pressed

 Display the first address starting from that alpha

 End if

 Endif

2. Form Based approach: Creates a standard format for specifying requirements.

Typically can have entries like :

1. Definition of the function or entity.

2. Description of inputs and where they come from.

3. Description of outputs and where they go to.

4. Indication of other entities required.

5. Pre and post conditions (if appropriate)

This method eliminates problems of natural language. This also brings in uniformity &

comprehensiveness. Not always useful Example specifying interactions)

3. Tabular Model

This is also used to supplement natural language. This is particularly useful when

you have to define a number of possible alternative courses of action. Example:

4. Graphical Model (like sequence diagram of UML)

This is most useful when state changes need to be depicted OR Sequence of actions &

interactions need to be described.

Condition Action

Sugar level falling (r2 < r1) CompDose = 0

Sugar level stable (r2 = r1) CompDose = 0

Sugar level increasing and rate of

increase decreasing ((r2-r1)<(r1-r0))

CompDose = 0

Sugar level increasing and rate of

increase stable or increasing. ((r2-r1) ≥

(r1-r0))

CompDose = round ((r2-r1)/4)

If rounded result = 0 then

CompDose = MinimumDose

 28

Sample Requirements Document

A typical SRS would look like the following example taken from a weblink free to

download document.

To be strictly used for Educational purpose only:

A document of Global Digital Megacorp Student Information Management System

available on:

web.uvic.ca/~cloke/Seng321Designer/SENG321-2008_Group4_RS1.0.doc

Requirements Engineering (RE) processes

The processes used for RE vary widely depending on the application domain, the people

involved and the organisation developing the requirements. However, there are a number

of generic activities common to all processes which are:

1. Feasibility Study

2. Requirements elicitation;

3. Requirements analysis;

4. Requirements validation;

5. Requirements management.

In practice, RE is an iterative activity in which these processes are interleaved.

The spiral view of requirements engineering process is shown in Fig 14

 29

Fig 14: Spiral view of Requirements engineering process

1. Feasibility Study : Decides whether or not the proposed system is worthwhile

attempting. A short focused study that checks the following:

a) If the system contributes to organisational objectives;

b) If the system can be engineered using current technology and within

budget;

c) If the system can be integrated with other systems that are used

d) If the system can fit into the cultural framework of the organizational

culture and acceptable to all the stake-holders

Information collection is done by asking questions to the stake-holders of the system

Typical Questions could be:

a) What if the system wasn‟t implemented?

b) What are current process problems?

c) How will the proposed system help?

d) What will be the integration problems?

 30

e) Is new technology needed? What skills?

f) What facilities must be supported by the proposed system?

2. Requirement Elicitation

Involves Interacting with technical staff working with customers to find out about

the application domain, the services that the system should provide and the system‟s

operational constraints. This may involve stakeholders like end-users, managers,

Engineers involved in maintenance, domain experts, trade unions, etc. Domain

requirements are also discovered at this stage.

Domain Requirements are derived from the application domain rather than specific needs

of a customer in that domain. They usually refer to specialized domain terminology /

concepts. They describe system characteristics & features that reflect the domain.

Domain requirements could be

1. New functional requirements,

2. Constraints on existing requirements or

3. Define specific computations.

If domain requirements are not satisfied, the system may be unworkable.

The requirements elicitation and analysis process

Fig 15 shows the process of requirements elicitation and analysis.

Fig 15: Requirements elicitation and analysis process

 31

Requirements Elicitation is done through

1. Interviewing: The RE team puts questions to stakeholders about the system that

they use and the system to be developed. There are two types of interviews:

Closed interviews where a pre-defined set of questions are answered.

Open interviews where there is no pre-defined agenda and a range of issues are

explored with stakeholders.

Normally a mix of closed and open-ended interviewing is good for getting an

overall understanding of what stakeholders do & how they interact with the

system. This method is not good for understanding domain requirements

2. Observation & study: Observation (in-situ): The RE team observes the manual

process in action, in-situ and infers required information. This is good for process

oriented systems. Minimal disturbance to user staff.

Study- Additional information is gathered from study of documents, forms

manuals , rulebooks and other artifacts used by the actors of the system . Here the

analyst must be well experienced with the domain

Problems with Requirement Elicitation

1. Stakeholders don‟t know what they really want.

2. Stakeholders express requirements in their own terms.

3. Different stakeholders may have conflicting requirements.

4. Organisational and political factors may influence the system requirements.

5. The requirements change during the analysis process

6. New stakeholders may emerge and the business environment change

Activities of Requirement Analysis

1. Requirements classification and organisation : Grouping related requirements and

organising them into coherent clusters

2. Prioritisation and negotiation: Prioritising requirements and resolving

requirements conflicts requirements documentation

3. Requirements are documented and input into the next round of the spiral

 32

Requirements validation

This is concerned with demonstrating that the requirements define the system that the

customer really wants. Requirements error costs are high so validation is very important.

Fixing a requirements error after delivery may cost up to 100 times the cost of fixing an

implementation error.

Requirements checking

To check the requirements for a software, the following parameters need to be

considered:

1. Validity. Does the system provide the functions which best support the customer‟s

needs?

2. Consistency. Are there any requirements conflicts?

3. Completeness. Are all functions required by the customer included?

4. Realism. Can the requirements be implemented given available budget and

technology

5. Verifiability. Can the requirements be checked?

Requirements validation techniques

Various ways exist for validating the requirements:

1. Requirements reviews: This involves systematic manual analysis of the

requirements.

2. Prototyping: This involves using an executable model of the system to check

requirements.

3. Test-case generation: Developing tests for requirements to check testability.

Requirements reviews

It is essential that regular reviews should be held while the requirements definition is

being formulated. Both client and contractor staff should be involved in reviews. Reviews

may be formal (with completed documents) or informal. Good communications between

developers, customers and users can resolve problems at an early stage.

Review checks

Parameters for review checks consist of checking for the following:

1. Verifiability: Is the requirement realistically testable?

2. Comprehensibility: Is the requirement properly understood?

3. Traceability: Is the origin of the requirement clearly stated?

 33

4. Adaptability: Can the requirement be changed without a large impact on other

requirements?

Requirements management

Process of understanding and controlling the changing requirements during the

requirements engineering process and system development forms the major activity of

requirements management. Requirements are inevitably incomplete & inconsistent. New

requirements emerge during the process as business needs change and a better

understanding of the system is developed. Different viewpoints have different

requirements and these are often contradictory. All this needs reconciliation &

management.

Reasons for change in Requirements

1. The business and technical environment of the system always changes after

installation. New hardware may be introduced, it may be necessary to interface

the system with other systems, business priorities may change (with consequent

changes in the system support required), and new legislation and regulations may

be introduced that the system must necessarily abide by.

2. The people who pay for a system and the users of that system are rarely the same

people. System customers impose requirements because of organizational and

budgetary constraints. These may conflict with end-user requirements and, after

delivery; new features may have to be added for user support if the system is to

meet its goals.

3. Large systems usually have a diverse user community, with many users having

different requirements and priorities that may be conflicting or contradictory. The

final system requirements are inevitably a compromise between them and, with

experience, it is often discovered that the balance of support given to different

users has to be changed.

Requirements management planning

This activity establishes the level of requirements management detail that is required. It is

essential that Requirements management decisions need to be taken for the following

purposes:

1. Requirements identification- Each requirement must be uniquely identified so that

it can be cross-referenced with other requirements.

 34

2. A change management process -This is the set of activities that assess the impact

and cost of changes. I discuss this process in more detail in the following

section.

3. Traceability policies- These policies define the relationships between each

requirement and between the requirements and the system design that should be

recorded.

4. Tool support- Tools that may be used range from specialist requirements

management systems to spreadsheets and simple database systems.

 35

Module 2 :System Models

Introduction

The aim of this Session is to introduce system modeling concepts that may be developed

as part of the requirements engineering and system design processes.

At the end of the session, the students will:

1. Understand What is Modelling

2. Justify why Modeling is required before building a software system

3. Appreciate fundamental system modeling perspectives of context, interaction,

structure, and behavior

4. Be aware of the ideas underlying model-driven engineering,

Difference between structural and behavioral models

 Software Systems are abstract and intangible and hence tend to be complex

 A Model represents essential characteristics of a complex system

 System modeling is the process of developing (abstract) models of a system, with

each model presenting a view of that system

 A system model represents aspects of a system and its environment

 Modeling Helps Understand Information systems

What is a Model

A Model is a simplified representation of either reality or vision. Since “a picture is worth

a thousand words,” most models use pictures to represent the reality or vision. Usually,

the system model becomes the blueprint for designing and constructing an improved

system.

A Model is a simplified representation of a complex system

System Modeling

System modeling is the process of developing abstract models of a system, with each

model presenting a different view or perspective of that system.

Since “a picture is worth a thousand words,” most models use some kind of graphical

notation representing a system, which is now almost always based on notations in the

Unified Modeling Language (UML).

 36

Model-driven analysis is a problem-solving approach that emphasizes the drawing of

graphical or pictorial system models to document and validate both existing and/or

proposed system.

Benefits of System Modeling

1. Ease project management tasks.

2. Can provide complete views of a system, as well as detailed views of subsystems.

3. Clarify structures and relationships.

4. Offer a communication framework for ideas within and between teams.

5. Can generate new ideas and possibilities.

6. Allow quality assurance and testing scenarios to be generated.

7. Are platform independent.

Why Modeling

Modeling is required to

1. Understand the existing software application to do any enhancement

2. Derive the requirements for a New software application

3. Discuss Different Design proposals to optimize the solution architecture

4. Document a Software Systems Structure and Operations to create Manuals

5. To Create Test Cases early in the Software Development Life Cycle

6. Modeling is used to

i. Conceptualize,

ii. Understand and

iii. Communicate

the functioning of a complex software system to stakeholders

Fig 1.1 Models of a Software System

 37

Types of Models

Different models may represent a system from different perspectives. For example:

1. An external perspective model representing the context or environment of the

system

2. An interaction perspective Model where the interactions between a system and its

environment or between the components of a system is represented.

3. A structural perspective model showing the organization of a system or the

structure of the data that is processed by the system.

4. A behavioral perspective, where the model shows the dynamic behavior of the

system and how it responds to events.

How to represent a Model

1. System Models are Usually represented graphically and so are the software

system Models.

2. Graphical models are very popular because they are easy to understand and

construct.

3. The Unified Modeling Language (UML) provides a standard for the artifacts of

development (semantic models, syntactic notation, and diagrams

4. UML is a general-purpose, developmental, modeling language in the field

of software engineering, that is intended to provide a standard way to visualize the

design of a system.

5. The creation of UML was originally developed by Grady Booch, Ivar

Jacobson and James Rumbaugh at Rational Software in 1996.

6. In 2005 UML was also published by the International Organization for

Standardization (ISO) as an approved ISO standard.

7. The UML standard is being periodically revised

UML Diagram Types

UML diagrams represent two different views of a system model

i. Static (or structural) view: emphasizes the static structure of the system using

objects, attributes, operations and relationships. It includes class

diagrams and composite structure diagrams.

 38

ii. Dynamic (or behavioral) view: emphasizes the dynamic behavior of the system

by showing collaborations among objects and changes to the internal states of

objects. This view includes sequence diagrams, activity diagrams and state

machine diagrams.

Universal Modeling Language

In building a visual model of a system, many different diagrams are needed to represent

different views of the system. The UML provides a rich notation for visualizing our

models. This includes the following key diagrams:

1. Use Case diagrams to illustrate user interactions with the system.

2. Class diagrams to illustrate logical structure.

3. Object diagrams to illustrate objects and links.

4. State diagrams to illustrate behavior.

5. Component diagrams to illustrate physical structure of the software.

6. Deployment diagrams to show the mapping of software to hardware

configurations.

7. Interaction diagrams (i.e., collaboration and sequence diagrams) to illustrate

behavior.

8. Activity diagrams to illustrate the flow of events in a use case.

 39

Fig 1.2 UML Diagrams

Fig 1.3 : UML Diagrams at different stages of SDLC

System Model Representation

1. Context models

2. Interaction models

3. Structural models

4. Behavioral models

5. Model-driven engineering

Context Models

 A context model is a model that shows how a system fit into the context of the

environment.

 Shows the scope and boundaries of a system at a glance including the other

systems that interface with it

 No technical knowledge is assumed or required to understand the diagram

 Easy to draw and amend due to its limited notation

 40

 Easy to expand by adding related systems

 Can benefit a wide audience including stakeholders, business analyst, data

analysts, developers

 Context models provide an overview (abstraction) of an entire system, and

shows the most important aspects.

 Details are not included.

 Context models are most useful in the requirements analysis and design stages.

 A context model is a model that shows how a system fit into the context of the

environment.

 Context models provide an overview (abstraction) of an entire system, and shows

the most important aspects.

 Details are not included.

 Context models are most useful in the requirements analysis and design stages.

Fig 1.4 Context Model of an ATM showing the external perspective

Process Models

 Context models simply show the other systems in the environment, NOT how the

system being developed is used in that environment.

 Process models reveal how the system being developed is used in broader

business processes.

 UML activity diagrams may be used to define business process models.

 41

Activity Diagrams

Activity diagrams are intended to show the activities that make up a system process

and the flow of control from one activity to another.

 The start of a process is indicated by a filled circle; the end by a filled

circle inside another circle.

 Rectangles with round corners represent activities, which are sub-

processes that must be carried out.

 A solid bar is used to indicate activity coordination.

When the flow from more than one activity leads to a solid bar then all of these activities

must be complete before progress is possible.

When the flow from a solid bar leads to a number of activities, these may be executed in

parallel. Arrows may be annotated with guards that indicate the condition when that flow

is taken.

Fig 1.5 Activity Diagram of a Library

Interaction Models

 Interaction Models help to identify user requirements.

 42

 Interaction Modeling helps to understand the communication process between
system-to-system interaction

 Modeling system interaction helps us understand and improve the system

performance and dependability.

 Use case diagrams and sequence diagrams may be used for interaction modelling.

Use Case Modeling

“A use case specifies the behavior of a system or a part of a system, and is a description

of a set of sequences of actions, including variants, that a system performs to yield an

observable result of value to an actor.”

 - The UML User Guide, [Booch,99]

“An actor is an idealization of an external person, process, or thing interacting with a

system, subsystem, or class. An actor characterizes the interactions that outside users may

have with the system.”

 - The UML Reference Manual, [Rumbaugh,99]

 Use cases were developed originally to support requirements elicitation and now

incorporated into the UML.

 Each use case represents a discrete task that involves external interaction with a

system.

 Actors in a use case may be people or other systems.

 Represented diagrammatically to provide an overview of the use case and in a

more detailed textual form.

 An actor is a direct external user of a system

 An object or a set of objects that communicates directly with the system but that

is not part of the system

 Modelling the actors helps to define a system by identifying the objects within the

system and those on its boundary

 An actor is directly connected to the system

 An indirectly connected object is not an actor and should not be included as part

of the system model

 Any interaction with an indirectly connected object must pass through actors

 43

Examples

 Customer and Repair Technician are actors of a vending machine

 Traveler, Agent and Airline are actors of a travel agency system

 User and Administrator are actors for a computer database system

 Actors can be persons, devices and other systems (anything that interacts directly

with the system)

 the Dispatcher of repair technicians from a service bureau is not an actor of a

vending machine

Sequence Models

Sequence models show the sequence of object interactions that take place between the

actors and the objects within a system

Sequence diagrams are part of the UML and are used to represent the sequence

model.

• The objects and actors involved are listed along the top of the diagram, with a

dotted line drawn vertically from these.

• Time is represented vertically so models are read top to bottom

• Interactions are represented by labelled arrows, Different styles of arrow represent

different types of interaction

 UML has a graphical notation for

 summarizing use cases into use case
diagrams

 A rectangle contains the use cases for a

system with the actors listed on the

outside

 The name of the system is written near a
side of the rectangle

 A name within an ellipse denotes a
usecase

 A “stick man” icon denotes an actor with

the name placed below the icon

 Solid lines connect use cases to
participating actors

 44

• A thin rectangle in an object lifeline represents the time when the object is the

controlling object in the system

Drawing Sequence Diagrams

i. Determine the context of the sequence diagram

ii. Identify the object that are participate in the sequence

iii. Set of the lifeline for each object

iv. Lay out of messages from the top to the bottom of the diagram based on the

order in which they sent

v. Add the execution occurrence to each object‟s lifeline

vi. Validate the sequence diagram

Sequence Diagram of a Patient Information System

Structural Models

Structural models show the organization of a system in terms of the components that

make up that system and their relationships.

Structural models may be

 Static models, which show the structure of the system design, or

 45

 Dynamic models, which show the organization of the system when it is

executing.

Structural models are created during discussion and designing the system architecture

Class Diagrams

Class diagrams are used when developing an object-oriented system model to show the

classes in a system and the associations between these classes.

An object class can be thought of as a general definition of one kind of system object.

An association is a link between classes that indicates that there is some relationship

between these classes.

When you are developing models during the early stages of the software engineering

process, objects represent something in the real world, such as a patient, a prescription,

doctor, etc.

UML Classes and Associations

Generalizations

Complexity is managed by Generalization Technique.

 46

Instead of detailed characteristics of every event that we experience, we generalise

these experiences into general classes (animals, cars, houses, etc.) and learn the

characteristics of these classes.

As different members of these classes have some common characteristics (e.g.

squirrels and rats are rodents), it will be easier to understand (and design) similar

events by co-relating the events and rebuilding the scenario.

In modeling systems, one of the common technique is to identify the features of

classes with scope for generalization. If changes are proposed, then there will be no

need to look at all classes in the system to see if they are affected by the change.

In object-oriented languages, such as Java, generalization is implemented using the

class inheritance mechanisms built into the language.

In a generalization, the attributes and operations associated with higher-level classes

are also associated with the lower-level classes.

 The lower-level classes are subclasses and inherit the attributes and operations from

their superclasses. These lower-level classes then add more specific attributes and

operations.

A Generalization Heirarchy

 47

Object Class Aggregation Models

Behavioral Models

Behavioral models are models of the dynamic behavior of a system as it is executing.

They show what happens or what is supposed to happen when a system responds to a

stimulus from its environment.

These stimuli may be of two types:

i. Data Some data arrives that has to be processed by the system, (Data Driven)

ii. Events Some event happens that triggers system processing. Events may have

associated data, although this is not always the case. (Event Driven)

Data Driven Modeling

Many business systems are data-processing systems that are primarily driven by data.

They are controlled by the data input to the system, with relatively little external

event processing.

Data-driven models show the sequence of actions involved in processing input data

and generating an associated output.

They are particularly useful during the analysis of requirements as they can be used to

show end-to-end processing in a system.

Data Flow Modeling

Data-flow models are used to show how data flows through a sequence of processing

steps. For example, a processing step could be to filter duplicate records in a customer

database.

The data is transformed at each step before moving on to the next stage.

 These processing steps or transformations represent software processes or functions

when data-flow diagrams are used to document a software design.

 48

They are simple and intuitive

Fig Order Processing Sequence Diagram

Fig Order Processing Sequence Diagram

Event-driven Modeling

Real-time systems are often event-driven, with minimal data processing. For

example, a landline phone switching system responds to events such as „receiver off

hook‟ by generating a dial tone.

Event-driven modeling shows how a system responds to external and internal events.

 49

It is based on the assumption that a system has a finite number of states and that

events (stimuli) may cause a transition from one state to another.

State Machine Models

These model the behaviour of the system in response to external and internal events.

They show the system‟s responses to stimuli so are often used for modelling real-time

systems.

State machine models show system states as nodes and events as arcs between these

nodes. When an event occurs, the system moves from one state to another.

Statecharts are an integral part of the UML and are used to represent state machine

models.

Microwave Oven Operation

 50

State Diagram of a Microwave Oven

States And Stimuli For The Microwave Oven

State Description

Waiting The oven is waiting for input. The display shows the current time.

Half power The oven power is set to 300 watts. The display shows „Half power‟.

Full power The oven power is set to 600 watts. The display shows „Full power‟.

Set time The cooking time is set to the user‟s input value. The display shows the cooking

time selected and is updated as the time is set.

Disabled Oven operation is disabled for safety. Interior oven light is on. Display shows „Not

ready‟.

Enabled Oven operation is enabled. Interior oven light is off. Display shows „Ready to

cook‟.

Operation Oven in operation. Interior oven light is on. Display shows the timer countdown. On

completion of cooking, the buzzer is sounded for five seconds. Oven light is on.

Display shows „Cooking complete‟ while buzzer is sounding.

 51

Model-driven Engineering

Model-driven engineering (MDE) is an approach to software development where

models rather than programs are the principal outputs of the development process.

The programs that execute on a hardware/software platform are then generated

automatically from the models.

Proponents of MDE argue that this raises the level of abstraction in software

engineering so that engineers no longer have to be concerned with programming

language details or the specifics of execution platforms.

Model Driven Architecture

Model-driven engineering is still at an early stage of development, and it is unclear

whether or not it will have a significant effect on software engineering practice.

Pros

 Allows systems to be considered at higher levels of abstraction

 Generating code automatically means that it is cheaper to adapt systems to

new platforms.

Cons

 Models for abstraction and not necessarily right for implementation.

 Savings from generating code may be outweighed by the costs of developing

translators for new platforms.

Types of Models

A computation independent model (CIM)

These model the important domain abstractions used in a system. CIMs are

sometimes called domain models.

A platform independent model (PIM)

These model the operation of the system without reference to its

implementation. The PIM is usually described using UML models that show

the static system structure and how it responds to external and internal events.

Platform specific models (PSM)

These are transformations of the platform-independent model with a separate PSM

for each application platform. In principle, there may be layers of PSM, with each

layer adding some platform-specific detail.

 52

MDA Transformations

MDA Platform Specific Models

Agile Methods and MDA

The developers of MDA claim that it is intended to support an iterative approach to

development and so can be used within agile methods.

The notion of extensive up-front modeling contradicts the fundamental ideas in the

agile manifesto and I suspect that few agile developers feel comfortable with model-

driven engineering.

 53

If transformations can be completely automated and a complete program generated

from a PIM, then, in principle, MDA could be used in an agile development process

as no separate coding would be required.

Executible UML

The fundamental notion behind model-driven engineering is that completely

automated transformation of models to code should be possible.

This is possible using a subset of UML 2, called Executable UML or xUML.

Features of Executible UML

To create an executable subset of UML, the number of model types has therefore

been dramatically reduced to these 3 key types:

Domain models that identify the principal concerns in a system. They are

defined using UML class diagrams and include objects, attributes and

associations.

Class models in which classes are defined, along with their attributes and

operations.

State models in which a state diagram is associated with each class and is used

to describe the life cycle of the class.

The dynamic behavior of the system may be specified declaratively using the object

constraint language (OCL), or may be expressed using UML‟s action language.

 54

Design and Implementation

Introduction

In software engineering the goal is to build a software product or to enhance an existing

one

Designing software is a process

An effective process

 Provides guidelines for efficient development of quality software

 Reduces risk and increases predictability

 Captures and presents best practices

 Learn from experiences

 Mentor for New Recruits

 Extension of training material

 Promotes common vision and culture

 Enables applying tools

 Provides efficient information exchange,

Rational Unified Process (RUP)

The Rational Unified Process (RUP) (Krutchen, 2003) is an adaptable process model that

has been derived from work on the UML and the associated Unified Software

Development Process.

It brings together elements from all of the generic software development process models

RUP enforces good practice in specification and design and supports prototyping and

incremental delivery.

The RUP recognizes that conventional process models present a single view of the

process. In contrast, the RUP is normally described from three perspectives:

1. A dynamic perspective, which shows the phases of the model over time.

2. A static perspective, which shows the process activities that are enacted.

3. A practice perspective, which suggests good practices to be used during the

process.

 55

Most descriptions of the RUP attempt to combine the static and dynamic perspectives in a

single diagram. I think that makes the process harder to understand, so I use separate

descriptions of each of these perspectives.

Dynamic perspective

The RUP is a phased model that identifies four discrete phases in the software process.

However, unlike the waterfall model where phases are equated with process activities, the

phases in the RUP are more closely related to business rather than technical concerns.

It is a software engineering process, aimed at guiding software development

organizations in their endeavors to develop effective software efficiently

The practice perspective on the RUP describes good software engineering practices that

are recommended for use in systems development. Six fundamental best practices are

recommended:

1. Develop software iteratively : Plan increments of the system based on customer

priorities and develop the highest priority system features early in the

development process.

2. Manage requirements : Explicitly document the customer‟s requirements and

keep track of changes to these requirements. Analyse the impact of changes on the

system before accepting them.

3. Use component-based architectures : Structure the system architecture into

components, as discussed earlier in this chapter.

4. Visually model software : Use graphical UML models to present static and

dynamic views of the software.

https://i0.wp.com/iansommerville.com/software-engineering-book/files/2014/07/RUP-phases.jpg
https://i0.wp.com/iansommerville.com/software-engineering-book/files/2014/07/RUP-phases.jpg

 56

5. Verify software quality. : Ensure that the software meets the organizational

quality standards.

6. Control changes to software. : Manage changes to the software using a change

management system and configuration management procedures and tools.

The RUP may not be a suitable process for all types of development e.g. embedded

software development. However, it does represent an approach that potentially

combines the three generic process models discussed in section 2.1. The most

important innovations in the RUP are the separation of phases and workflows, and the

recognition that deploying software in a user‟s environment is part of the process.

Phases are dynamic and have goals. Workflows are static and are technical activities

that are not associated with a single phase but may be used throughout the

development to achieve the goals of each phase.

Design and Implementation

Software design and implementation is the stage in the software engineering process

at which an executable software system is developed.

Software design and implementation activities are invariably inter-leaved.

Software design is a creative activity to identify software components and their

relationships, based on a customer‟s requirements.

Implementation is the process of realizing the design as a program.

Build or Buy

In a wide range of domains, it is now possible to buy off-the-shelf systems (COTS)

that can be adapted and tailored to the users‟ requirements.

For example, if you want to implement a medical records system, you can buy a

package that is already used in hospitals. It can be cheaper and faster to use this

approach rather than developing a system in a conventional programming

language.

When you develop an application in this way, the design process becomes concerned

with how to use the configuration features of that system to deliver the system

requirements.

 57

System Context And Interactions

Understanding the relationships between the software that is being designed and its

external environment is essential for deciding how to provide the required system

functionality and how to structure the system to communicate with its environment.

Understanding of the context also lets the developer establish the boundaries of the

system. Setting the system boundaries helps designor decide what features are

implemented in the system being designed and what features are in other associated

systems.

Context and Interaction Models

A system context model is a structural model that demonstrates the other systems in

the environment of the system being developed.

An interaction model is a dynamic model that shows how the system interacts with its

environment as it is used.

Architectural Design

Once interactions between the system and its environment have been understood, we

use this information for designing the system architecture.

we identify the major components that make up the system and their interactions, and

then may organize the components using an architectural pattern such as a layered or

client-server model.

The weather station is composed of independent subsystems that communicate by

broadcasting messages on a common infrastructure.

 58

The Object Model

A general view of program structure shared by UML and object-oriented

programming languages like Java and C++

Computation takes place in objects that:

store data and implement behaviour

are linked together in a network

communicate by sending messages

are described by classes

Object Oriented Design Process

There are a variety of different object-oriented design processes that depend on the

organization using the process.

Common activities in these processes include:

Define the context and modes of use of the system;

Design the system architecture;

Identify the principal system objects;

Develop design models;

Specify object interfaces.

Process illustrated here using a design for a wilderness weather station.

Approaches to Object Identification

Use a grammatical approach based on a natural language description of the system

(used in Hood OOD method).

Base the identification on tangible things in the application domain.

Use a behavioural approach and identify objects based on what participates in what

behaviour.

Use a scenario-based analysis. The objects, attributes and methods in each scenario

are identified.

Examples of Design Models

Sequence models that show the sequence of object interactions.

State machine models that show how individual objects change their state in response

to events.

 59

Other models include use-case models, aggregation models, generalization models,

etc.

Sub-system models show

logical groupings of objects into coherent subsystems.

how the design is organized into logically related groups of objects.

In the UML, these are shown using packages - an encapsulation construct. This is a

logical model. The actual organization of objects in the system may be different.

Design Models and Code

UML is based on the same object model as object-oriented programming languages

 60

Example : Weather Station Information

Requirements: Use Case Diagram

Collect weather information from

instruments at regular intervals

Transmit this information, on

request, to the weather information

system over the satellite link

Store information if

communications are not available

Monitor external conditions and

shut down power

generation/instruments if threat of

 61

damage from extreme weather

Run regular diagnostic tests to

assess overall health of system

Context Model for weather station

 62

Weather Station Class Models

identifier

repor tWeather ()

calibrate (instruments)

test ()

star tup (instruments)

shutdown (instruments)

WeatherStation

test ()

calibrate ()

Ground

thermomet er

temper ature

Anemomet er

windSpeed

windDirection

test ()

Baromet er

pressure

height

test ()

calibrate ()

WeatherData

airTemper atures

groundT emper atures

windSpeeds

windDirections

pressures

rainfall

collect ()

summarise ()

Weather Station Subsystems

« subsystem»
Inter face

« subsystem»
Data collection

CommsController

WeatherStation

WeatherData

Instrument
Status

« subsystem»
Instruments

Air
 thermometer

Ground
 thermometer

RainGauge

Barometer

Anemometer

WindVane

 63

Design Patterns

A design pattern is a way of reusing abstract knowledge about a problem and its

solution.

A pattern is a description of the problem and the essence of its solution.

It should be sufficiently abstract to be reused in different settings.

Pattern descriptions usually make use of object-oriented characteristics such as

inheritance and polymorphism.

A design pattern is a descriptions of communicating objects and classes that are

customized to solve a general design problem in a particular context

 Design patterns represent the best practices used by experienced object-oriented

software developers.

Design patterns are solutions to general problems that software developers faced

during software development.

These solutions were obtained by trial and error by numerous software developers

over quite a substantial period of time.

Design patterns are optimized, reusable solutions to the programming problems that

we encounter every day.

A design pattern is not a class or a library that we can simply plug into our system; It

is a template that has to be implemented in the correct situation.

It's not language-specific.

A good design pattern should be implementable in most programming languages,

depending on the capabilities of the language.

Any design pattern when correctly implemented , it can be a Great Solution,

However, if implemented in the wrong place, it can be disastrous and create many

problems.

Benefits of patterns

Design reuse

Uniform design vocabulary

Enhance understanding, restructuring, & team communication

Basis for automation

 64

Transcends language-centric biases/myopia

Abstracts away from many unimportant details

Patterns, Architectures and Frameworks

There can be confusion between patterns, architectures and frameworks.

Let‟s try to distinguish them:

Architectures model software structure at the highest possible level, and give the

overall system view. An architecture can use many different patterns in different

components

Patterns are more like small-scale or local architectures for architectural components

or sub-components

Frameworks are partially completed software systems that may be targeted at a

particular type of application. These are tailored by completing the unfinished

components.

Pattern Elements

Name : A meaningful pattern identifier.

Problem description : Explains the problem and its context

Solution description : Not a concrete design but a template for a design solution that

can be instantiated in different ways.

Consequences : The results and trade-offs of applying the pattern

Types of Design Patterns

There are 3 types of pattern …

Creational: address problems of creating an object in a flexible way. Separate creation,

from operation/use.

Structural: These design patterns concern class and object composition. Concept of

inheritance is used to compose interfaces and define ways to compose objects to obtain

new functionalities.

Behavioral: These design patterns are specifically concerned with communication

between objects. Patternsaddress problems of assigning responsibilities to classes.

Suggest both static relationships and patterns of communication (use cases)

 65

S.N. Pattern & Description

1 Creational Patterns

These design patterns provide a way to create objects while hiding the creation

logic, rather than instantiating objects directly using new operator. This gives

program more flexibility in deciding which objects need to be created for a given

use case.

2 Structural Patterns

These design patterns concern class and object composition. Concept of inheritance

is used to compose interfaces and define ways to compose objects to obtain new

functionalities.

3 Behavioral Patterns

These design patterns are specifically concerned with communication between

objects.

4 J2EE Patterns

These design patterns are specifically concerned with the presentation tier. These

patterns are identified by Sun Java Center.

Creational Design Patterns

Creational patterns often used in place of direct instantiation with constructors. They

make the creation process more adaptable and dynamic. In particular, they can provide a

great deal of flexibility about which objects are created, how those objects are created,

and how they are initialized.

 66

Singleton

When an application wants to have one and only one instance of any class per JVM, in all

possible scenarios without any exceptional condition.

Factory

This is most suitable where there is some complex object creation steps are involved. To

ensure that these steps are centralized and not exposed to composing classes, factory

pattern should be used.

Abstract factory

Whenever you need another level of abstraction over a group of factories, you should

consider using abstract factory pattern.

Structural Design Patterns

These design patterns show you how to glue different pieces of a system together in a

flexible and extensible fashion. Structural patterns help you guarantee that when one of

the parts changes, the entire structure does not need to change.

Adapter

Convert the interface of a class into another interface clients expect. Adapter lets classes

work together that couldn‟t otherwise because of incompatible interfaces.

Decorator

This is used to add additional features or behaviors to a particular instance of a class,

while not modifying the other instances of same class.

Behavioral Design Patterns

A behavioral pattern abstracts an action you want to take from the object or class that

takes the action. By changing the object or class, you can change the algorithm used, the

objects affected, or the behavior, while still retaining the same basic interface for client

classes.

Command

Command pattern is a behavioral design pattern which is useful to abstract business logic

into discrete actions which we call commands. This command object helps in loose

coupling between two classes where one class (invoker) shall call a method on other class

(receiver) to perform a business operation.

https://howtodoinjava.com/design-patterns/singleton-design-pattern-in-java/
https://howtodoinjava.com/design-patterns/creational/implementing-factory-design-pattern-in-java/
https://howtodoinjava.com/design-patterns/creational/abstract-factory-pattern-in-java/

 67

Visitor

When you want a hierarchy of objects to modify their behavior but without modifying

their source code.

Memento

Memento design pattern provides ability to capture(save) an object‟s state and then

restore back this captured state when required by the system.

State

State Design Pattern allows the behavior of an object to vary based on its state. I.e.

whenever the object‟s state changes, its behavior changes as per its new state. To the

observer it appears as if the object has changed its class.

Using Design Patterns

To use patterns in our design, we need to recognize that any design problem may

have an associated pattern that can be applied.

Tell several objects that the state of some other object has changed (Observer

pattern).

Tidy up the interfaces to a number of related objects that have often been developed

incrementally (Façade pattern).

Provide a standard way of accessing the elements in a collection, irrespective of how

that collection is implemented (Iterator pattern).

Allow for the possibility of extending the functionality of an existing class at run-time

(Decorator pattern).

Some general guidelines for using design patterns are :

Is there a pattern that addresses my problem?

Does the pattern provide an acceptable solution?

Is there a simpler solution? (pattern overuse)

Is the context of the pattern consistent with my problem?

Are the consequences of using the pattern acceptable?

Are there forces in my environment that conflict with the use of the pattern?

 68

Software Implementation

Software Implementation is often the most important step in the software process

cycle. Some of the issues of implementation are

Reuse Most modern software is constructed by reusing existing components or

systems. When you are developing software, you should make as much use as

possible of existing code.

Configuration management During the development process, you have to keep

track of the many different versions of each software component in a

configuration management system.

Host-target development Production software does not usually execute on the

same computer as the software development environment. Rather, you develop it

on one computer (the host system) and execute it on a separate computer (the

target system).

Software Reuse

From the 1960s to the 1990s, most new software was developed from scratch, by

writing all code in a high-level programming language.

The only significant reuse or software was the reuse of functions and objects in

programming language libraries.

Costs and schedule pressure mean that this approach became increasingly unviable,

especially for commercial and Internet-based systems.

An approach to development based around the reuse of existing software emerged

and is now generally used for business and scientific software.

Reuse Level

The abstraction level : At this level, you don‟t reuse software directly but use

knowledge of successful abstractions in the design of your software.

The object level : At this level, you directly reuse objects from a library rather than

writing the code yourself.

The component level : Components are collections of objects and object classes that

you reuse in application systems.

The system level : At this level, you reuse entire application systems

 69

Reuse Costs

The costs of the time spent in looking for software to reuse and assessing whether or

not it meets your needs.

Where applicable, the costs of buying the reusable software. For large off-the-shelf

systems, these costs can be very high.

The costs of adapting and configuring the reusable software components or systems

to reflect the requirements of the system that you are developing.

The costs of integrating reusable software elements with each other (if you are using

software from different sources) and with the new code that you have developed.

Configuration Management

Configuration management is the name given to the general process of managing a

changing software system.

The aim of configuration management is to support the system integration process so

that all developers can access the project code and documents in a controlled way,

find out what changes have been made, and compile and link components to create a

system.

Version management : Versioning is the mechanism to manage systems changes

Complex systems developed, installed, and maintained in series of versions to

simplify testing and support

Alpha version – incomplete testing version

Beta version – end-user testing version

Production release version – formally distributed to users or made operational

Maintenance release – bug fixes, small changes

where support is provided to keep track of the different versions of software

components. Version management systems include facilities to coordinate

development by several programmers.

System integration, where support is provided to help developers define what versions

of components are used to create each version of a system. This description is then

used to build a system automatically by compiling and linking the required

components.

 70

Problem tracking, where support is provided to allow users to report bugs and other

problems, and to allow all developers to see who is working on these problems and

when they are fixed.

Host Target Development

Most software is developed on one computer (the host), but runs on a separate

machine (the target).

More generally, we can talk about a development platform and an execution platform.

A platform is more than just hardware. It includes the installed operating system plus

other supporting software such as a database management system or, for development

platforms, an interactive development environment.

Development platform usually has different installed software than execution

platform; these platforms may have different architectures.

Development Platform Tools

Some of the development platform tools are,

An integrated compiler and syntax-directed editing system that allows you to create,

edit and compile code.

A language debugging system.

Graphical editing tools, such as tools to edit UML models.

Testing tools, such as Junit that can automatically run a set of tests on a new version

of a program.

Project support tools that help you organize the code for different development

projects.

Software development tools are often grouped to create an integrated development

environment (IDE).

An IDE is a set of software tools that supports different aspects of software

development, within some common framework and user interface.

IDEs are created to support development in a specific programming language such as

Java. The language IDE may be developed specially, or may be an instantiation of a

general-purpose IDE, with specific language-support tools

 71

Deployment Factors

If a component is designed for a specific hardware architecture, or relies on some

other software system, it must obviously be deployed on a platform that provides the

required hardware and software support.

High availability systems may require components to be deployed on more than one

platform. This means that, in the event of platform failure, an alternative

implementation of the component is available.

If there is a high level of communications traffic between components, it usually

makes sense to deploy them on the same platform or on platforms that are physically

close to one other. This reduces the delay between the time a message is sent by one

component and received by another

Open Source Development

If a component is designed for a specific hardware architecture, or relies on some

other software system, it must obviously be deployed on a platform that provides the

required hardware and software support.

High availability systems may require components to be deployed on more than one

platform. This means that, in the event of platform failure, an alternative

implementation of the component is available.

If there is a high level of communications traffic between components, it usually

makes sense to deploy them on the same platform or on platforms that are physically

close to one other. This reduces the delay between the time a message is sent by one

component and received by another

The best-known open source product is, of course, the Linux operating system which

is widely used as a server system and, increasingly, as a desktop environment.

Other important open source products are Java, the Apache web server and the

mySQL database management system

Open Source Issues

Should the product that is being developed make use of open source components?

Should an open source approach be used for the software‟s development?

More and more product companies are using an open source approach to

development.

 72

Their business model is not reliant on selling a software product but on selling

support for that product.

They believe that involving the open source community will allow software to be

developed more cheaply, more quickly and will create a community of users for the

software.

Open Source Licensing

A fundamental principle of open-source development is that source code should be

freely available, this does not mean that anyone can do as they wish with that code.

Legally, the developer of the code (either a company or an individual) still owns the

code. They can place restrictions on how it is used by including legally binding

conditions in an open source software license.

Some open source developers believe that if an open source component is used to

develop a new system, then that system should also be open source.

Others are willing to allow their code to be used without this restriction. The

developed systems may be proprietary and sold as closed source systems.

The GNU General Public License (GPL). This is a so-called „reciprocal‟ license that

means that if you use open source software that is licensed under the GPL license,

then you must make that software open source.

The GNU Lesser General Public License (LGPL) is a variant of the GPL license

where you can write components that link to open source code without having to

publish the source of these components.

The Berkley Standard Distribution (BSD) License. This is a non-reciprocal license,

which means you are not obliged to re-publish any changes or modifications made to

open source code. You can include the code in proprietary systems that are sold.

License Management

 Establish a system for maintaining information about open-source components

that are downloaded and used.

 Be aware of the different types of licenses and understand how a component is

licensed before it is used.

 Be aware of evolution pathways for components.

 Educate people about open source.

 Have auditing systems in place.

 73

 Participate in the open source community.

Implementation Process

The process of software implementation consists of the following steps

1. Acquisition

2. Development

3. Testing

4. Documentation

5. Software versioning

6. Data porting and conversion

7. System deployment

8. Training

9. Maintenance

Acquisition refers to the decision of either build or buy the software after due

diligence

Program development is time consuming. It may account for as much as one-third of

development labor. One-third to one-half of project development schedule

Quality assurance is the process of Process of ensuring information system meets

minimum quality standards as Determined by users, implementation staff, and

management. It also involves Identification of gaps or inconsistencies in system

requirements. QA integrated into project throughout SDLC and the Cost of fixing

errors rise as project progresses

System testing involves testing hardware devices, testing and debugging computer

programs, and testing information processing procedures.

An important part of testing is the production of prototypes of displays, reports, and

other output.

It is important to involve end users in the testing stage to recognize errors, and to

provide feedback.

 74

Software Implementation consists of smooth transition from old system to New

System. This involves porting old data to new system or converting old data format

to new formats. Major forms of conversion are

Parallel: both old and new systems are operated until IS team and management

agrees to convert

Pilot: one department or work site serves as a tester.

Phased: only parts of the new system or only a few departments, offices, or plant

locations at a time are converted

Plunge: direct abandonment of old system and conversion to new system.

Data Conversion : Data needed at system startup

Files or databases of system being replaced

Manual records

Files or databases of other systems

User feedback during normal system operation

Reuse of existing databases

Reloading database contents

Creating new databases

Installation

After development and testing, system must be put into operation. New system can be

installed and quickly made operational, However, in case of enhancement or defect

removal, the following points need to be taken care of

Overlapping systems turned off

Both systems concurrent for brief time

Advantage – simplicity and fewer logistics issues to manage

Disadvantage – risk due to no backup

Important planning considerations include

Costs of operating both systems in parallel,

Detecting and correcting errors in new system,

 75

Potentially disrupting the company and IS operations

Training personnel and customers with new procedures

System Documentation

One of the most important aspect of the project is documentation. In fact, the success of

a project depends entirely on the quality of documentation. The documentation should

cover but not limited to

Descriptions of system functions, architecture, and construction details

User manuals for maintenance personnel and future developers

Source code, Analysis and design models, Operational details (System Manual) as

applicable

Failure to maintain system documentation compromises value of a system

User Documentation

Special attention should be paid for user documentation which will be used by Used

by end users and system operators. It should include the details about

Descriptions of how to interact with and maintain the system

Startup and shutdown

Keystrokes, mouse, or command functions to perform specific functions

Program function for specific business procedures

Common errors and correction techniques

 76

Module 3: Agile Software Development

The Agile Manifesto: Values and Principles

Learning Objectives

By studying The Agile Manifesto: Values and Principles.

• You will Understand and Appreciate the rationale for Agile Software

Development Methods

• You will Understand and Appreciate the Agile Manifesto: Values and

Principles, and

• You will Understand and Appreciate the differences between Agile and Plan

Driven Development

Introduction

Agile Movement is towards developing software and software systems in a rapid way. In

this chapter the Agile Manifesto: Values and Principles, we study the rationale for Agile

Software Development Methods, the Agile Manifesto: Values and Principles, and the

differences between Agile and Plan Driven Development

Need for Agile Software Development

Software is a part of every system and such a software shall be released on-time, help

users to fulfill their expectations, and also, ensure business value. These critical

requirements can be addressed by adapting practices of rapid development and delivery

of software so that we can address technical disruptions, emergence of competing

products and services, new opportunities and markets, and align to changing social and

economic conditions. However making it possible is not so easy but quite a challenging

one because of changes that have become common phenomena which come in the form

of – demand for do it fast in days or weeks; expectations of customer, users, and team

members to understand their ideas and incorporate them; more aggressive demand to give

out workable product as soon as possible; and that too without any need for cumbersome

and rigorous processes including sign-offs. In order to address these challenges, software

development community and organizations are always seeking for superior approaches,

 77

and as days are progressing these superior approaches have basis in repaid development

and delivery of software approaches.

Agile Software Development is one such rapid development and delivery of software

approach that helps to address a critical requirement in software product development by

making it increasingly possible to release software product on time, making it relevant

and useful, and incorporate changes even in later stages in software development life

cycle stages. Agile practices will help in release of workable product by increasing

possibility of higher value to business and users.

However mindset and rigorous practice of processes over years have „conditioned‟

software development community and organizations that have „institutionalized‟ process

based culture where all roles in software development and delivery are reflecting and

exhibiting mindset of worrying only about the project by forgetting the product in every

acts and deeds which show-off in the form of - customer needs everything that would

have been addressed yesterday, conflicts and negotiations that are more inclined towards

making someone accountable by exhibiting culture of „If it is your problem, fix it at

your cost‟ than focusing on addressing the concern; and attitude that intensively focuses

where in no-one wants to pay for anything which hinders the very thought process of

adding innovation and value.

Though this is predominantly representing existing situations, the context is increasingly

compelling software development and organizations to look-out solutions for „what to do

now to stay and be relevant?!‟. Failure to find solutions or exhibition of „corporate ego

and arrogance‟ may result in abandonment of product by customers and bankruptcy of

well-to do companies faster than our imagination. Hence to stay in business and continue

to be relevant there is no other option than accepting that change is bound to be here,

understanding that project and customer-vendor mindset is “not working”, and customer

and user needs greater product and then we shall move forward to establish culture of

worrying about delivering the workable product by getting away from irrelevant project

development, process, and documentation. Agile Software Development provides more

optimistic path to achieve these goals and objectives.

 78

Agile Model

Unlike other software development models, assumes that the change is constant so adapt

to change rather than control change

This is very practical and major movement away from conventional software

development models which assume that Requirements will not rapidly change ones we

specify them and Object Oriented models that work with objective of need to design for

the future and need to design for reuse

Agile Manifesto and Four Key Ideas in Agile

To produce better software product by reducing the time gap between doing some

activity and gaining feedback.

In order to implement agile manifesto, agile development approach uses four key ideas:

 Individuals and interactions are preferred over processes and tools

 Working software is preferred over comprehensive Documentation

 Customer collaboration is preferred over contract negotiation

 Responding to change is preferred over following a plan

And agile manifesto and agile software development uses following Key Principles.

Key Principles of Agile Manifesto and Agile Software Development

Agile manifesto and agile software development uses following Key Principles.

• #1 Principle: Customer Involvement: Customer Should be Closely involved

throughout the Development Process Their role is provide and priorities new

system requirements and to evaluate the iterations of the system.

• #2 Principle: Incremental Delivery: The Software Developed in Increments

with the customer specifying the requirements to be included in each increment.

• #3 Principle: People Not Process: The Skills of Development Team should be

recognized and exploited. Team member should be left to develop their own ways

of working without prescriptive process.

• #4 Principle: Embrace Change: Expect the System Requirements to Change and

so design system to accommodate these changes.

• #5 Principle: Maintain Simplicity: Focus on Simplicity in both the software

being developed and in the development process. Wherever possible, actively

work to eliminate the complexity from the system.

 79

Agile Methods: Where is it Working Well?

Agile methods work very well in small and medium scale software development and

teams. Agile methods are found be effective under situations mentioned below:

 Product Development where software company is developing a small or medium

sized product for sale

 Customer System Development within an organization where there is clear

commitment from the customer involved in the development process and where

there are not a lot of external rules and regulations that affect the software

Agile methods seems to be less effective in project, teams, and software that are large in

size, and also, where systems are safety and mission critical. Agile methods face issues

and failures when

 Putting in a fixed price contract where managing cost & effort becomes more

important over business value. Agile methods since focus on value more than cost

and effort frequently fail to stick to cost and effort.

 Expecting all of the scope to be delivered: Agile methods focus on workable

product and on-time delivery. Hence in agile we can notice negotiating with scope

by reducing or increasing scope when it is found to be of value can be quite a

common characteristic.

 Pushing the team hard – making unrealistic demands: Agile uses group creativity

and co-creation and as such team motivation is critical for success. When we push

the team hard by putting unrealistic demands, we can see that it may result in

demotivated team. Demotivated team frequently fails to deliver value and

innovation.

 Focusing on project execution efficiency as against product value delivered:

Project efficiency is all about sticking to scope, effort, schedule, and budget.

Agile accepts changes and hence scope always undergoes change even in later

stages of the software development life cycle and it may consume more effort and

budget. Hence agile methods may not of great value in fixed-budget and fixed-

scope projects.

 80

Plan-Driven and Agile Development

Learning Objectives

By studying Plan-driven and Agile Development:

 You will understand and appreciate the differences between Agile Development

and Plan-driven Approaches

 You will understand on range of questions to be answered so as to effectively

balance Agile Development and Plan-driven Approaches

Introduction

Plan-driven development focuses on sticking to scope, using allocated effort and budget,

sticking to on-time delivery, and compliance with process. It believes that quality product

is result of plan-driven project management and process management.

When compared with plan-driven approach, agile development focuses on providing

value and delivering workable product. Accepting changes and varying scope, using

more effort and cost than allocated are seen frequently in agile development. However

agile believes in fixed-schedule ensuring on-time delivery. In brief, agile development

believes in workable product by willingly accepting changes with higher value against

that of plan-driven development wherein ones plan including processes is accepted then

changes are discouraged. In this section, we study the differences between Agile

Development and Plan-driven Approaches, and understand on range of questions to be

answered so as to effectively balance Agile Development and Plan-driven Approaches.

The Differences between Agile Development and Plan-driven Development

Approaches

Following table provides the differences Agile Development and Plan-driven

Development Approaches:

Table 3.1 : Difference between Agile Development and Plan-driven Development

Approach

Agile Development Approach Plan-driven Development Approach

“Producing Workable Product”:

 Creativity of People and their

“Process Centric Delivery”

 Compliance with Processes shall be

 81

Decision shall be considered as the

basis to produce Workable Product

 Continuous Incremental

Integration and Deployment of the

Product as fast as possible

considered as the basis to produce

“Quality Product”

 Well planned Product Integration

and Deployment of the Product only

after User Acceptance of the Product

“Design and Implementation” centric

 Requirement Specification,

Designing, Implementation, And

Verification & Validation Take

Place “Simultaneously”

“Stage-wise Implementation”

 Well Defined Stages with Clearly

Defined Inputs, Entry Criteria,

Outputs with Baselined Output Of

One Stage becomes Input To Begin

The Next Stage.

“Active Participation in All Tasks”

 All Stake Holders are Accountable

and Actively Engage throughout

 Engage to add value with

Simplicity

“Well-defined Role and Role Specific

Tasks”

 Each Role is Accountable for a

Specific Role and Work Product

 Work only for Delivering the Work

Product they are Responsible for

“Active Participation of People

throughout and Group Creativity”

 Accountable for Delivery of the

Workable End-Product

 Group Thinking, Seamless

Communication and Active

Participation

“Role Specific Involvement and

Analytical Thinking”

 Accountable for the Delivery of a

Specific Phase-end Work Product

 Analytical Thinking, Role Specific

Communication and Participation

“No Explicit Testing Phase”

 Development and Testing are

Simultaneous Activities

 Verification and Validation takes

place Simultaneously with the

Creation of Work Product

“Explicit Testing Phase”

Development and Testing are Separate

Phases

Verification and Validation takes place only

“after Creation” of Work Product

Testing is the Role of Specific Roles only

 82

 All are involved in Testing

 Stake Holders Decide on Product

Readiness

User Acceptance Testing is the basis for

Deciding on Product Readiness

“Relevant Documentation based on

Need felt by Stake Holders”

 Emphasis on Relevant

Documentation only

 Stake Holders decide on Need,

Type, and Depth of Documentation

“Intensive Documentation based on

Stringent Requirements of the Phase in

Life Cycle”

 Emphasis on Intensive and In depth

Documentation

 Project Specific tailored Process

„forces‟ on Rigorous and Mandatory

Documentation

Effectively Balancing Agile Development and Plan-driven Approaches

Most projects include Balancing of practices from Agile Development and Plan-driven

Approaches. To arrive at effective combined approach we need to answer a range of

Technical, Human, and Organizational Questions. We have to ask this range of questions

and get proper professional and corroborated answers so as to effectively balance Agile

Development and Plan-driven Approaches.

Questions and what we seek for: A Range of Technical, Human, and Organizational

Questions to Define a Combined Project Specific Approach

Question #1: Need for Very Detailed Specification and Design

 Is it Important to have a very detailed specification and design before moving to

Implementation?

 If YES

=> Probably need to use Plan-driven Approach

Question #2: Incremental Delivery with Rapid Feedback from Customer

 Is an Incremental delivery strategy, where you deliver the software to the

customer and get rapid feedback from them, realistic?

 If YES

=> If so, consider using Agile Approach

 83

Question #3: How large is the system that is being developed and team size and

where it is located?

 If the system developed is small by a small co-located team who can

communicate informally

If YES

=> Consider using Agile Approach

 If the system developed large by a larger team who can communicate formally

If YES

=> Consider using Plan-driven Approach

Question #4: What type of System is being developed?

 Does the system requires a lot of analysis and detailed design before

implementation?

If YES

=> Consider using Plan-driven Approach

Question #5: What is the expected System Life Time?

 Does the expected system life time is long and requires a lot of detailed

documentation to communicate with maintenance and support team?

If YES

=> Consider using Plan-driven Approach

 Does the expected system life time is small with rudimentary and incomplete

documentation with no need of maintenance and support the workable product?

If YES

=> Consider using Agile Approach

Question #6: What Technologies are available to support system development?

 If technologies that are available are robust, stable, and with enough expertise?

If YES

=> Consider using Plan-driven Approach

 If technologies are bleeding edge and whose stability and robustness are yet to be

evaluated

 84

If YES

=> Consider using Agile Approach

Question #7: How is the Development Team Organized?

 Distributed, Outsourced, and need intensive documentation and formal

communication?

If YES

=> Consider using Plan-driven Approach

 Co-located, homogeneous, and rudimentary and basic documentation and

interactive communication?

If YES

=> Consider using Agile Approach

Question #8: Are their cultural issues that may affect system development?

 Traditional Engineering Organizations with a need of intensive documentation

and formal communication?

If YES

=> Consider using Plan-driven Approach

 Non-traditional, deployment oriented organizations with continuous live updates

and replacements that require rudimentary and basic documentation and

interactive communication?

If YES

=> Consider using Agile Approach

Question #9: How good are the designers and programmers in the development

team?

 If the designers and programmers in the development team are with higher skills,

capability, competence, and adaptability?

If YES

=> Consider using Plan-driven Approach

 Non-traditional, deployment oriented organizations with continuous live updates

and replacements that require rudimentary and basic documentation and

interactive communication?

 85

If YES

=> Consider using Agile Approach

Question #10: Is the System subject to external regulation?

 Is the System subject to external regulation requiring external regulatory authority

to approve with the requirement to produce intensive and formal documentation?

If YES

=> Consider using Plan-driven Approach

 Is the System not subjected to any external regulation and does not require any

external regulatory authority to approve?

If YES

=> Consider using Agile Approach

The above questions are acting as cues and trigger much needed though processes. By

using these questions, and by understanding situations and context, we have to make

professional judgements to go in depth to develop an insight and then make a proper

choice of plan-driven development approach and agile development approach.

 86

 Agile Methods: SCRUM Approach

Learning Objectives

By studying Agile Methods- SCRUM Approach:

 You will Understand and Appreciate the SCRUM Approach and

 You will Understand and Appreciate How Key Practices in Extreme

Programming relate to the General Principles of Agile Methods

Introduction

Scrum is the most popular framework for agile implementation in projects. Scrum is an

iterative incremental framework for managing agile projects. The SCRUM Approach of

Agile has roles, terminology, and software process framework with agile specific

programming approach referred to as extreme programming.

SCRUM Approach and Roles

Scrum is the most popular framework for agile implementation in projects. Scrum is an

iterative incremental framework for managing agile projects. Scrum has following roles:

 Scrum Master – maintains the Scrum processes

 Product Owner – represents the stakeholders

 Team – a group of about 7 people

o The team does the actual development: analysis, design, implementation,

testing, etc.

While using Scrum Approach, we shall be conversant with certain Scrum specific

terminology which include the following”

 Product Backlog: All features that have to be developed

 Sprint Backlog: All features planned for the current sprint

 Sprint: An iteration in the Scrum development and its usually few weeks

Scrum Process Framework

Scrum Process Framework starts with “Product Backlog”. “Product Backlogs” is set of

features that form the basis to start with agile implementation. There can be changes to

the product backlog as we proceed since agile welcomes changes at any stage in software

development.

 87

The “Product Backlogs” is split into many “Sprint Backlogs” with each spring backlog

having a set of specific features. While deciding on sprint backlog and its scope,

importance is given for rigid “2-weeks schedule” (sometimes up to 4 weeks buy never

beyond 4 weeks) for implementation of the sprint backlog. All Scrum Roles contribute in

deciding “Sprint Backlogs” and by doing estimation.

Each “Sprint Backlog” forms the scope of “Sprint” which is an iteration in the Scrum

development and its usually 2-4 weeks. Scrum focuses on design-and-program by using

“Extreme Programming” approach. At the end of each Sprint we get workable

Configuration Item which shall be maintained in configuration management tool.

As and when we complete a sprint it is integrated, workable product is built, and rolled

out. We require automation with proper build and release strategy towards this.

Fig 3.1 Scrum Approach

 88

Stage 1: Outline Planning and Architectural Design

Agile Team is established comprising of developers and testers, typically Select

maximum 7 members. The “Product Backlog” received from the client are Broken up

into “Sprint Backlogs”. Sprints are of fixed length, normally of 2-4 weeks. The team

arrives at a high level plan for the sprint. Team deliberates on Architectural Design,

Strategy for Continuous Integration, Unit Testing and Automation.

Stage 2: Implement Sprint Cycle

Sprint Cycle implementation involves following 4 Phases:

• 2.1 Assess Phase

• 2.2 Select Phase

• 2.3 Develop Phase

• 2.4 Review Phase

2.1 Assess Phase

This involves the following:

• Study “Sprint Backlogs”

• Write user stories for each product backlog

– User Stories are the simplest description of the business requirement that will

allow acceptance tests to be created and estimates to be done

– The Business Customers are the owners of these user stories and are the one

point contact to the development team for the queries

– Use user stories to create time estimates for the release planning meeting

2,2 Select Phase

This involves the following:

• Select features and functionality to be developed with discussion involving the

team that works with customer each iteration starts with an Iteration Planning

Meeting.

• Arrive at Development Tasks

• Team Member chooses Development Tasks he wants to own

• Decide on “Test-Code-Refactor” based Iterative development

 89

2.3 Develop Phase

This involves the following steps:

• 2.3.1 Test First Approach: write a test and make design decisions

• 2.3.2 Code by using Xtreme Programming with Paired Programming. Write Just

Enough Code and Test simultaneously. Automate Unit Testing, and Refactor to

keep Code Healthy

Following sections discuss on each of these steps in length.

2.3.1 Test First Approach: Write a Test and Make Design Decisions

XP uses Test-first Development. Test-first Development or Test Driven Development

involves incremental Test Development from User Stories by involving User in the Test

Development and Validation. These Test Cases are being used as specification for

development of code and also, testing and also, using Automated Testing Framework

with focus on stronger Unit Testing using Test Automation Tools. For example, in Java

programming Junit is used.

Test-first Development or Test Driven Development (TDD), also known as test-first

programming or test-first development, is a testing methodology associated with Agile

Programming.

Test First Approach is an evolutionary approach to development where you must first

write a test that fails before you write new functional code. We write tests not as an

afterthought to ensure our code works, but instead as just part of the everyday, every

minute way of building software. Instead of writing our detailed design specifications on

paper, we write them in code. Instead of first striving to perfectly design a system on

paper, we use tests to guide our design. Here every chunk of code is covered by unit tests,

which must all pass all the time. This would eliminate unit-level and regression bugs

during development.

 90

Fig 3.2 Test First or Test Driven Development (TDD) Approach

TDD concentrates on designing and developing one requirement at a time. After the

requirement is implemented it is tested. If the test fails, the problem is rectified and is

tested again. This process of testing and rectifying occurs until the test becomes

successful. All the requirements are designed, developed and tested one by one.

Integration will be continual.

Test First Development addresses the following: Ad-hoc unit testing and building

infrastructure for regression testing, load testing and stress testing

TDD focuses on Internal Quality Characteristics which are related to quality of code:

Correctness, Structured, Modularity, and Documentation.

2.3.2 Code by using Xtreme Programming with Paired Programming

Here we write “Just Enough Code and Test simultaneously”. Automate Unit Testing, and

Refactor to keep Code Healthy. Now we shall discuss on Xtreme Programming with

Paired Programming concpets in length.

Extreme (XTreme) Programming (XP)

Extreme Programming (XP) is perhaps the most popular agile development methodology

that uses good practices of iterative development that provides the highest value for the

customer. In order to make it happen it uses a set of values, principles and practices for

rapidly developing high-quality software.

XP is characterized by

 User stories

Write a test

Pick a test to

implement

Build the

work product

Execute Test,

watch it fail
If fail, make little

change iteratively

till test is pass

Run test,

watch it pass

Re-factor to eliminate

duplication/code

optimization,

broken test cases

 91

 Pair programming

 Refactoring frequent integration

Following are Key Practices in Extreme Programming relate to the General Principles of

Agile Methods:

 Incremental Development: Incremental Development is well supported through

small frequent releases of the system with the help of requirements that are

represented as Functionalities in the form of User Stories

 Customer Involvement is supported: Representative of End-User of the System

and Customer shall Involve, Engage, and Constructively Criticise and also, define

& prioritise requirements and developing Acceptance Test for the system

 People but not Processes: People but not Processes is supported through Paired

Programming, Collective Ownership of the Code, and Suitable Development

Process that discourages long working hours

 Change is Embraced through Regular and Frequent Releases to Customer: Test

First Development, Refactoring to avoid Code Degeneration and Continuous

Integration of New Functionality

 Maintaining Simplicity is Supported: By constant refactoring that improves code

quality and by using simple design that do not unnecessarily anticipate future

changes to the system

Extreme Programming Principles or Practices

Following are Extreme Programming Principles and Practices:

Principle or Practice Description

Incremental Planning “Requirements” => Recorded as “User Stories” one per

“Story Card” => Prioritised => User Stories are split into

“Development Tasks” by developers

Small Releases “Minimal useful Set of Functionalities” that provide

“Business Value” is Developed first. “Frequent and

Incremental Development and Release”

Simple Design Good Enough Design that is Just Sufficient to meet the

Current Requirements

 92

Test-First Development Emphasis for Unit Test Automation Framework using

Test Scenarios and Providing them as the basis for

Validation before commencement of Implementation/

Coding

Refactoring Code is Continuously Refactored as and when scope for

improvement comes. Also, keep the Code Simple and

Maintainable

Paired Programming Developers work in Pairs. Check each others Code and

Provide Inputs and Expertise to Improve Upon Each

other‟s Code

Collective Ownership All Stake Holders including Customer, Developer,

Tester, and any other role will seamlessly interact and

exchange with no bar on their role by taking collective

Ownership and Accountability

Continuous Integration As soon as the work in the task is complete then it is

integrated into whole system. After any such Integration

all the Unit Test in the System must Pass

Sustainable Pace Team is not over stretched so as to work extra hours.

This would enhance Code Quality and Productivity since

team works with higher motivational levels and lesser

stress.

On-site Customer Representative of End-User of the System and Customer

shall Involve, Engage, and Constructively Criticise and

also, define & prioritise requirements

 93

Extreme Programming Process

Life Cycle of XP include a lightweight process targeted towards engineering teams and

also focused on adaptive to changes.

XP works out very effectively for small and medium sized project teams, i.e., 3-20

members. To make XP to work effectively, communication between development and

testing team shall be enabled all the time.

Fig 3.3 Steps in EP Process

Extreme Programming (XP) uses paired programming concept.

Paired Programming and Refactoring

Extreme Programming (XP) uses paired programming concept. In Paired Programming,

The coding is usually done in pairs where two programmers periodically switch roles.

The pairs also change often. The code review happens continuously. The pairs are

determined while iteration planning.

This ensures

• Higher quality code

• Continuous cross training happening

• Improves team communication.

Paired Programming will be effective when used with “Refactoring”. When each iteration

is in progress towards small release, there can be request for changes or revisions to user

stories. To address these changes or revisions

Pair Programming

Planning
Study

User Stories

Add Test

Decide on
Iteration

Build Code

Run the Tests

Pass?

Make a Little
Change to Code

FailPass

 94

 Code is refactored, means, in case the developed code needs some changes the

same will be done.

 Also, changes will be carried out on test cases as well to align with these changes.

 This cycle continues until the module is developed

2.4 Review Phase

In review phase, we carry put following activities:

• Refactoring is used to Review and Improve Code and to Keep Code healthy

• When each iteration is in progress towards small release, there can be request for

changes or revisions to user stories.

• To address these changes or revisions

– code is refactored, means, in case the developed code needs some changes the

same will be done.

– Also, changes will be carried out on test cases as well to align with these

changes.

– This cycle continues until the module is developed

Stage 3: Project Closure

Continuous Integration and Acceptance Tests by involving Customers is the basis

• Customers are responsible for verifying the correctness of the acceptance tests

and reviewing test scores to decide which failed tests are of highest priority.

• Acceptance tests are also used as regression tests prior to a production release.

• A user story is not considered complete until it has passed all its acceptance tests.

• The acceptance test score is published to the developer. It is the developer‟s

responsibility to schedule time in each iteration to fix any failed tests.

• The code that passes the acceptance test is integrated with code of other

developers. Like this, final system is evolved

Now we discuss,

• 3.1 Continuous Integration and Small Releases

• 3.2 Acceptance Testing

3.1 Continuous Integration and Small Releases

The Code from each developer is regularly integrated with code of other developers. All

unit tests are then run successfully. Code is normally integrated multiple times per day.

 95

Acceptance tests are run daily to reduce occurrences of major integration issues. Frequent

small releases happen at the end of each iteration.

This gives an opportunity

 To show case the progress to Customer more frequently.

 Feedbacks from the customer are then incorporated into the subsequent iterations

3.2 Acceptance Testing

Acceptance tests are black box system tests. Customers are responsible for verifying the

correctness of the acceptance tests and reviewing test scores to decide which failed tests

are of highest priority. Acceptance tests are indicators of the completion of a requirement

or feature. When all acceptance tests for a requirement or feature are passing, you know

you‟re done. Acceptance tests are also used as regression tests prior to a production

release. A user story is not considered complete until it has passed all its acceptance tests.

The acceptance test score is published to the developer. It is the developer‟s

responsibility to schedule time in each iteration to fix any failed tests. The code that

passes the acceptance test is integrated with code of other developers. Like this, final

system is evolved. Tester will execute all the system test cases and log the defects with

respect to that module/iteration which are fixed immediately

Advantages of SCRUM in Telecommunication Software (Ref: Rising and Janoff)

Study on Telecommunication Software developed by using Scrum revealed following

advantages:

• Advantage #1: The Product Backlog is broken down into a set of manageable and

understandable Chunks

• Advantage #2: Unstable Requirements do not hold up progress

• Advantage #3: The whole team has visibility of everything and consequently team

communication has improved

• Advantage #4: Customer see on-time delivery of increments an gain feedback on

how product works

• Advantage #5: Trust between customers and developers is established and a

positive culture is created in which everyone expects the project to succeed

 96

Scaling Agile Methods

Agile Methods worked conventionally very well with small and medium sized projects,

Co-located Team, and team sizes ranging from 7 to 20 members. Scaling agile to larger

projects and large organizations so as to get the advantages and benefits of this approach

has gained momentum and interest.

“Scaling Agile Methods”: Characteristics of Large Software System Development

Large Software System Development have the following characteristics:

• #1: Geographical Distributed Teams working independently on their Sub-system

with no need to communicate with teams working on other sub-systems. Missing

whole system view, and possible risks related to integration

• #2: Many of them are “Brown Field Systems” with new system is built to work by

connecting with existing systems. These may pose problems of Interoperability,

portability, and immune to change

• #3: More System Configuration and Lesser New Incremental Development of

Software

• #4: Large System Development are Bound by Stronger Processes with No

Flexibility. Hence Software Development effort is more towards Process

Management and Compliance with Rules and Regulations

• #5: Large Systems have a diverse set of stake holders who can not be involved in

development process

“Scaling Agile Methods”: Two Perspectives

Following are two perspectives on “Scaling Agile Methods” to make it effective for

Large Software System Development

• “Scaling up” Perspective: By using Agile Methods small teams can not develop

large software system

• “Scaling out” Perspective: Concerned with how agile methods can be introduced

across a large organizations with many years of software experience

“Scaling Agile Methods”: Adaption to Cope with Large Systems Engineering

“It is essential to maintain the fundamentals of agile methods characterised by Flexible

Planning, Frequent System Releases, Continuous Integration, Test Driven Development,

and Good Team Communication” (Leffingwell, 2007)

 97

Critical Adaptions for Large Systems Development

• #1: Do not just focus on Just Enough Code and Test simultaneously. You need to do

more up-front design involving describing critical aspects of the system, database

schema, work break down across teams, and system documentation

• #2: Establish Cross Team Communication Mechanism by using team structuring, by

making use of more advanced conferencing technologies, and knowledge

management

• #3: Adapt Effective Configuration Management Tool with System Configuration,

System Building, Frequent Release, Change Management, and Live Update and

Replacement. Appropriate Integration-Build-Release- Issue Management with the

help of automation of Configuration Management is very crucial.

“Scaling Agile Methods”: Difficulties in Adaption to Cope with Large Companies

Following difficulties have been observed in adaption of agile mthods to cope with large

companies:

• #1 Reluctance of Project Managers to accept Agile Approach: Project Managers

who are accustomed to Project Driven and Process Driven Culture feel more

comfort and confidence. They are reluctant to accept challenges and risks of

adapting to Agile Approach

• #2 Matured Processes do not encourage Agile Approach: Existing Matured

Quality Management System with stable and standard processes that are against

frequent changes and continuous adaption discourage use of agile approaches

• #3: Skill Variance and Team Attrition does not suite to Agile Approach: Large

Companies have greater Skill Variance, have Globally Distributed Teams, and

Individuals may move to other companies. Agile requires Uniform Skills and

Capability, Homogenous Team Culture, and Co-located Teams

• #4 Organizations with Conventional Systems Engineering Processes are reluctant

to use Agile Approaches since they have evolved and reached stability in earnings

and have ability to cope with economic recession successfully

"Why do we fail to get best out of Agile“: Top 6 Reasons

Following are top 6 reasons for not getting the best out of agile.

• Lack of System Thinking and Contextualization

 98

• Difficulty in moving from “task oriented, process driven mindset” to “solution

oriented, workable product oriented mindset”

• Complexity in ensuring seamless communication among agile team members

• Scaling up agile to large projects is not very effective

• Confidence level of delivering the best within a given effort is uncertain

• Decay in agile culture as team progresses

 Summary

Agile Software Development is People Centric Approach. It works very well with Small

Teams, Small Projects, and Frequent Releases but struggles to adapt to large projects and

large companies. In agile, Interactive and Constructive Communication is key to success.

In agile, User Stories, Flexible Planning, Frequent System Releases, Continuous

Integration, Test Driven Development, Test-Code-Refactor and Good Team

Communication are key practices. Agile software development is Design and

Implementation Centric approach that encourages frequent releases of workable product.

In agile software development, Unit Test Automation and Automation of Configuration

Management play crucial role. Agile quite effective and customers and users increasingly

like it because of its willingness to accept changes even in late phases of development is

acceptable. Agile software development works with “Fixed Time” Approach. However

compromises with effort, budget, and requirements. Success of agile software

development depends heavily on Skills and Capability of Team. Organizations shall take

decision on whether to Adapt Agile Approach or not with care since it is involving

tectonic shift in organizational culture.

 99

Module 4: Software Testing

Software Quality Control - Inspection and Testing

Software Engineering is all about producing Producing good Quality software product

that

1. Meets users needs,

2. Is highly reliable

3. Has MINIMUM number of bugs (preferably 0)

4. Developed in cost effective way

and

5. Delivered according to planned schedules.

 Term “Quality” as applied to software means different things to different stake holders:

Fig 4.1: Software Quality

However, we can consider Good quality software as one that meets the user‟s needs in

terms of Correctness (meets Functional Requirements),Reliability(User can depend on it;

Operates as expected over specified time) and Robustness (Behaves „reasonably‟ even

under „unspecified‟ circumstances).

 100

Other important attributes are Efficiency & Performance, Maintainability &

Evolvability, Usability / reusability &I interoperability, Understandability &

Portability .

Thus we see that Software Quality is Not as “ simple and straight forward “ as for other

engineering products. It is Problematic because:

– Software specs are usually incomplete & often inconsistent.

– Some quality needs are difficult to specify in an unambiguous way;

– There is a tension between quality requirements of :

• Customer (efficiency, reliability, etc.)

 and

• Developer (maintainability, reusability, etc.);

Further It is not possible for any system to be optimized for all of these attributes – for

example, improving robustness may lead to loss of performance. The quality plan should

therefore define the most important quality attributes for the software that is being

developed. The plan should also include a definition of the quality assessment process -

An agreed way of assessing whether some quality, such as maintainability /robustness, is

present in the product

The focus may be „fitness for purpose‟ rather than specification conformance.

FITNESS FOR PURPOSE is decided based on answers to questions like:

– Has the software been properly tested?

– Is the software sufficiently dependable to be put into use?

– Is the performance of the software acceptable for normal use?

– Is the software usable?

– Is the software well-structured and understandable?

– Have programming and documentation standards been followed in the

development process?

Further, Quality Requirement priorities Vary from Domain to domain.

– Business Software - Data integrity, availability & Security, Transaction

Performance & Ease of use

– Web Based Software – Security, Scalability & Content

 101

– PC Software - Ease of use & Convenience

– Real Time Systems - Precise response time, reliable & Time-critical

performance

– Embedded software - Online response with limited resources

2. Engineering Software - Precision & Accuracy

Next question is how do we produce this quality software?. What are the processes and

steps we use to ensure that Quality software is produced? Quality issues need to be

managed at different levels to ensure good quality software comes out. At organization

level it involves (QA) it involves establishing a framework of processes and standards

and Continuous monitoring and validation of these processes to make sure that they

ensure quality of developed product. At project level, it involves (QC), it involves

establishing a workable Quality plan that sets quality goals and correct application of

specific quality processes defined in the plan and Ensuring that the project outputs

conform to the specified standards

Quality management Tasks are

• Provide an independent check on the software development process

• Check the project deliverables to ensure that they are consistent with

organizational standards and goals

• Done by quality team that is independent from the development team so that:

– they can take an objective view of the software without being influenced

by software development issues

Fig 4.2: Quality management Tasks

 102

Another important issue in ensuring Quality of the software developed is Verification &

validation (V & V) .

It is nothing but Checking and analyzing products & processes executed during & after

the development ,

to ensure that software being developed meets the specifications and Delivers the

expected functionality.

Verification & validation are NOT the same thing. Boehm (1979) differentiated the

two with a clear expression as follows :

1. VERIFICATION - "Are we building the product right”. (The software should

conform to its specification)

2. VALIDATION - "Are we building the right product”. (The software should do what

the user really requires.)

V & V – Has TWO principal objectives

o The discovery of defects in a system;

o The assessment of whether or not the system is useful and useable in an

operational situation

o Goal is to establish confidence that the software is fit for purpose. (This does

NOT mean completely free of defects. Rather, it must be good enough for its

intended use)

o The type of use will determine the degree of confidence that is needed.

V & V Confidence Depends on following factors:

o Software function

o The level of confidence depends on how critical the software is to an

organisation.

o User expectations

o Users may have low expectations of certain kinds of software.

o Marketing environment

o Getting a product to market early may be more important than finding defects

in the program.

 103

V & V Process Is a whole life-cycle process applied at each stage in the software

process. Verification & validation (V & V).Starts with requirement review and continues

through design reviews, code inspection and product testing. It is very expensive,

complex, monotonous BUT very important and critical activity that is manpower

intensive and it can never be totally automated

TWO approaches for V & V

1. Software inspections

- Concerned with analysis of the static system representation to discover

problems (static verification)

- May be supplement by tool-based document & code analysis

2. Software testing

- Concerned with exercising and observing product behaviour (dynamic

verification)

- The system is executed with test data and its operational behaviour is

observed

Verification & Validation techniques

1. Inspection

Inspection involves program inspections, automated source code analysis, formal

verification of programs. It can only check the correspondence between a program & its

specifications (verification). It Cannot demonstrate the operational usefulness of the

software being developed, Nor can it check emergent properties of the software like

performance, reliability etc..

2. Testing

Testing is most widely used and main technique for V & V that involves exercising the

program with data. It can reveal the presence of errors NOT their absence. It is the only

validation technique for non-functional requirements as the software has to be executed

to see how it behaves. It should be used in conjunction with Inspection (static

verification) to provide full V&V coverage

 104

Testing & Debugging are Two distinct processes. While Testing is concerned with

establishing the existence of defects in a program, Debugging is concerned with locating

& repairing these errors.

Planning V & V is Very important since more than half the budget is spent on this

process in many cases. Careful planning is required to get the most out of testing and

inspection processes. It Should start early in the development process. The plan should

identify the balance between static verification and testing. Test planning is about

defining standards for the testing process rather than describing product tests

Test Plan ia a link between development & testing, Planning document must contain

following Details.

 The testing process.

 Requirements traceability.

 Tested items.

 Testing schedule.

 Test recording procedures.

 Hardware and software requirements.

 Constraints.

Software Inspections Involve people examining the source representation with the aim

of discovering anomalies and defects. It may be used before implementation as there is

no need for system execution. It may be applied to any representation of the system

(requirements, design, configuration data, test data, etc.). It is shown to be an effective

technique for discovering program errors. Success depends on the quality of people

performing inspection

Software Testing involves execution of code on the machine using test cases and test

data prepared for these cases in advance. It is the only validation technique for non-

functional requirements as the software has to be executed to see how it behaves. It

Should be used in conjunction with static verification to provide full V&V coverage

 105

Objectives of testing can be stated as :

o To demonstrate to the developer and the customer that the software meets

its requirements (Leads to validation Testing)

o To discover faults or defects in software where the behavior is incorrect,

undesirable or does not conform to its specification (leads to verification

testing)

Testing can not demonstrate that the software is free of defects or it will behave as

specified in every situation.

“Testing can only show the presence of errors not their absence”. Hence the goal of

testing should be to convince developers & customers that the software is ready for use

Inspection V/s Testing

 Three advantages over testing:

a. In testing, one defect ,may mask another so several executions are

required; Many different defects may be discovered in a single

inspection

b. Inspection can be performed on incomplete versions too; But testing

needs fully developed product

c. Inspection can also consider broader quality attributes like standards

compliance, programming style etc., but testing can only look for

specific functionality / bug

 BUT disadvantages of inspections are :

a. Inspection is highly dependent on the expertise and interest of the

people performing inspections

b. Inspections can check conformance with a specification but not

conformance with the customer‟s real requirements.

c. Inspections cannot check non-functional characteristics such as:

performance, usability, etc

The program inspection Process.

 106

Program inspections are reviews, done to detect defects like logical errors, code

anomalies, non-compliance of standards etc.. in the program. It was first developed by

IBM in 70‟s and now fairly widely used method of verification. It is carried out formally

by a team of at least 4 people. Team consists of members who represent different view

points (Like for example of Author of the code, testing team representative, System

expert and moderator). Inspection does not require execution of a system; Hence done

before implementation. It may be used on any system element(doc) like Reqt. Design,

configuration data, test data,Code…. . it is shown to be an effective technique for

discovering program errors. Pre-conditions for inspection are :

a. A precise specification must be available.

b. Team members must be familiar with the organisation

standards.

c. Syntactically correct code or other system representations

must be available.

d. An error checklist should be prepared.

e. Management must accept that inspection will increase

costs early in the software process.

f. Management should not use inspections for staff appraisal

i.e. finding out who makes mistakes

Inspection Process (Inspection procedure)

1. System overview presented to inspection team.

2. Code and associated documents like checklists are distributed to

inspection team in advance.

3. Inspection takes place and discovered errors are noted.

4. Modifications are made to repair discovered errors.

5. Re-inspection may or may not be required.

 107

Fig 4.3: Inspection Process

Inspection Checklists are commonly used tool in Inspection. It Contains a list of

common errors should be used to drive the inspection. It is Dependent on programming

language and reflects the characteristic errors that are likely to arise in the language. In

general, the 'weaker' the type checking, the larger the checklist. Examples: Initialisation,

Constant naming, loop termination, array bounds, etc.

 108

Inspection – some remarks : Inspecting 500 lines costs about 40 man/hours effort;

(hence it turns out to be less expensive than testing). Since program inspection is a public

process of error detection, management needs to be sensitive. As organization gain

experience of the inspection process, the process improvements can be attempted.

Collection of data on types of errors can lead to process modifications that can cut errors

at source

Static Analysis – is a process of examining a program to discover errors WITHOUT

executing it (The essence of inspection) . ItCan be automated for some standard common

errors resulting in STATIC ANALYZERS - Software tools that scan & parse the text of

a program and detect possible faults and anomalies. It Can detect Whether the statement

has been well formed. It Can do control flow analysis & even compute the data set

needed to test the program. It Complements the error detection facilities of a compiler

and serves as an effective V & V aid supplementing inspection. Automate static analysis

includes Control Flow analysis, Data use Analysis, Interface analysis, Information flow

analysis and Path analysis

Another Quality Assurance technique is IMPOSITION OF STANDARDS. Software

standards are something set up and established by an authority as a rule or norm for the

measure of quantity, functionality, value, or quality. Standardization is the wide use of

components, parts, procedures, or processes in which there is regularity, repetition, and a

successful practice and predictability. Standards Define the required attributes of a

product / process that play an important role in quality management. Standards may be

International, National, or organizational or Project standards

WHY USE STANDARDS? It avoids repetition of past mistakes, encapsulates best

practices, and pProvides framework for defining what quality means in a particular

setting i.e. that organization‟s view of quality.Further, it provides continuity by making it

easy for new staff to understand the organisation by understanding the standards that are

used.

 109

Product and Process Standards

Product standards apply to the software product being developed. They Include

document standards, such as the structure of requirements documents, documentation

standards, such as a standard comment header for an object class definition, & coding

standards, defining the use of a programming language in coding

Process standards define the processes to be followed during software development. It

may include definitions of specification, design and validation processes,process support

tools and a description of the documents that should be written during these processes

Steps involved in Development of Standards are : Involving practitioners in

development. Engineers should understand the rationale underlying a standard. Standards

and their usage need to be reviewed regularly. Standards can quickly become outdated

and this reduces their credibility amongst practitioners. Also theremust be specialized

tool support. Excessive clerical work is the most significant complaint against standards.

Web-based forms are not good enough

Standardization has three Drawbacks :

1. Soon become more of document filling ritual

2. Need some automation tools; otherwise consumes too much time in filling forms

3. Needs constant revision; otherwise engineers fell it is irrelevant and just a ritual

ISO 9000 Standards framework : Provides An international set of standards to be used

as a basis for developing quality management systems. It Applies to organizations that

design, develop and maintain products, including software. It is a framework for

developing software standards. It Sets out general quality principles, Describes quality

processes in general and Lays out the organizational standards and procedures that should

be defined . These should be documented in an organizational quality manual

 110

ISO 9001 & Quality Management

Fig 4.4: ISO 9001 & Quality management

ISO 9001 Limitations

The ISO 9001 certification is inadequate because it defines quality to be the conformance

to standards.It takes no account of quality as experienced by users of the software. For

example: A company could define test coverage standards specifying that all methods in

objects must be called at least once. This standard can be met by incomplete software

testing that does not include tests with different method parameters. But as long as the

defined testing procedures are followed and test records maintained, the company is ISO

9001 certified!!! .

 111

Testing

Testing is the Most widely used and main technique for V & V. it Involves exercising the

program with data .

TESTING Can reveal the presence of errors NOT their absence. It is The only

validation technique for non-functional requirements as the software has to be executed

to see how it behaves.It Should be used in conjunction with static verification to provide

full V&V coverage .

Objectives of testing: is to demonstrate to the developer and the customer that the

software meets its requirements (Leads to validation Testing) It is two fold.

 To discover faults or defects in software where the behavior is incorrect,

undesirable or does not conform to its specification (leads to verification testing)

 Testing can not demonstrate that the software is free of defects or it will behave as

specified in every situation.

“Testing can only show the presence of errors not their absence” Hence the goal of

testing should be to convince developers & customers that the software is ready for use

Testing Policies constrain the extent and scope of testing by defininge approach to

testing . Only exhaustive testing can show a program is free from defects. However,

exhaustive testing is impossible, Hence we adopt Testing policies like

 All functions accessed through menus should be tested;

 Combinations of functions accessed through the same menu should be

tested;

 Where user input is required, all functions must be tested with correct

and incorrect input

 112

Testing process

Fig 4.5: Testing process

Testing Phases

1. Component testing is testing of individual program components; It is usually the

responsibility of the component developer (except sometimes for critical systems); Tests

are derived from the developer‟s experience.

2. System testing is Testing of groups of components integrated to create a system or sub-

system; Independent testing team takes up this responsibility and Tests are based on a

system specification.

Testing individual functions / methods aresimplest. Tests are nothing but a set of calls

to these methods with different set of parameters : Right values , Wrong value, Border

values and Various combination of right, wrong and border values. Results are matched

with expected results.

Component testing is the process of testing individual components in isolation. It is a

defect testing process meant to discover errors Components may be:

 113

o Individual functions or methods within an object;

o Object classes with several attributes and methods;

o Composite components with defined interfaces used to access

their functionality

– Developers of the component are responsible for this testing

Complete test coverage of a class involves Testing all operations associated with an

object; Setting and interrogating all object attributes; and Exercising the object in all

possible states.

Inheritance makes testing all the more difficult: When a super-class provides operations

that are inherited by the sub-classes, All of these subclasses must be tested with All

inherited operations using All parameters used by these methods because Subclass may

make certain presumptions about other operations & attributes / Method may be

overridden in sub-class

Composite component testing - Composite components are made up of a several

interacting objects, whose functionality is tested basically through the interfaces these

objects expose to the external world, Hence testing composite components is primarily

concerned with testing those

Interface Testing : Here the Objective is to detect faults due to interface errors or invalid

assumptions about interfaces. Different types of interfaces to be tested are:

o Parameter interfaces

 Data passed from one procedure to another.

o Shared memory interfaces

 Block of memory is shared between procedures or

functions.

o Procedural interfaces

 Sub-system encapsulates a set of procedures to be

called by other sub-systems.

o Message passing interfaces

 114

 Sub-systems request services from other sub-systems

Generally the errors can be classified into 3 categories:

– Interface misuse

o A calling component calls another component and makes an

error in its use of its interface e.g. parameters in the wrong

order.

– Interface misunderstanding

o A calling component embeds assumptions about the behaviour

of the called component which are incorrect.

– Timing errors

o The called and the calling component operate at different

speeds and out-of-date information is accessed

Guidelines for interface testing

o Design tests so that parameters to a called procedure are at the

extreme ends of their ranges

o Always test pointer parameters with null pointers

o Design tests which cause the component to fail

o Use stress testing in message passing systems

o In shared memory systems, vary the order in which

components are activated.

Test Case Design Involves designing the test cases (inputs and outputs) used to test the

system. The goal of test case design is to create a set of tests that are effective in

validation and defect testing such that it Throw up maximum errors with minimum

number of test cases. Design approaches generally considered are :

o Requirements-based testing;

o Partition testing;

o Structural testing.

Approach – 1 Requirements-based Testing is a general principle of requirements

engineering is that requirements should be testable. Requirements-based testing is a

 115

validation testing technique where you consider each requirement and derive a set of tests

for that requirement.

Approach 2 – Partition testing involves dividing Input data and output results of a

program often fall into different classes that have common characteristics such as:

Positive numbers, Negative numbers, Menu selections etc... Each of these classes is an

equivalence partition or domain where the program behaves in an equivalent way for

each class member. Test cases should be chosen from each partition.

Input partitions for search routine

– Test software with sequences which have only a single value.

– Use sequences of different sizes in different tests.

– Derive tests so that the First, Middle and Last elements of the

sequence are accessed.

– Test with key element NOT in the sequence

Approach 3 – Structural testing is an approach where test cases are derived from the

knowledge of the software‟s structure & implementation it is also known as white-box /

glass-box / clear-box testing. Objective is to exercise all program statements, not all path

combinations

Testing is an expensive process phase. Hence automation is necessary to reduce time

and cost. Testing workbenches provide a range of tools to reduce the time required and

total testing costs. Systems such as Junit support the automatic execution of tests. Most

testing workbenches are open systems because testing needs are organisation-specific.

They are sometimes difficult to integrate with closed design and analysis workbenches.

 116

Software project management

Software project management is an essential part of Software engineering, Concerned

with activities involved in ensuring that software is delivered on time and within

budget estimates in accordance with the requirements of the organisations developing

and procuring the software. This is very essential because all projects have budget and

time constraints to be met.

Many techniques of engineering project management are equally applicable to software

project management.

Technically complex engineering systems tend to suffer from the same problems as

software systems. But there are Features unique to software projects like:

1. The product is intangible and uniquely flexible

2. Software engineering is not yet matured like other engineering discipline like

mechanical, electrical engineering, etc.

3. The software development process is not standardised.

4. Many software projects are 'one-off' projects.

Though Software project management varies from organization to organizations, It

basically involves activities like:

1. Proposal Planning.

2. Project planning and scheduling.

3. Project monitoring and reviews.

4. Project costing.

5. Risk Management

Proposal Writing: Most projects start with this activity to get management approval for

starting a project.

The Proposal describes, The objectives of the project, How the project will be carried out,

thePrice and schedule estimates . It is a A critical task that needs good skills that can be

developed ONLY through practice and experience. No guidelines can be set for this task.

 117

An important aspect of this exercise is to come up with cost / price for the project. It

involves Project pricing involves estimating how much the software will cost to develop,

taking factors such as staff costs, hardware costs, software costs, etc. into account.

Though pricing is based on estimates, There is NO SIMPLE RELATIONSHIP between

development cost and the price charged to the customer. Broader organizational,

economic, political and business considerations influence the price charged.

Factors affecting software pricing

 118

Pricing Strategies :

1. Under- pricing – (Quoting below the normal price) is done at times to gain a contract

and keep staff busy & retain them for future opportunities OR to get entry to new

market area.

2. Over Pricing - (Quoting above the normal price) is done at times to cover high risks

involved in fixed price contracts.

3. Pricing to win – (Priced according to what the software developer believes the buyer

is willing to pay even if this is less that the development costs, The software

functionality may be reduced accordingly with a planto add extra functionality being

added in a later release. Additional costs may be added as the requirements change

and these may be priced at a higher level to make up the shortfall in the original

price.

Project Planning

Project Planning is the most important and probably the most time-consuming project

management activity. It is a Continuous activity from initial concept through to system

delivery. The Plan drives the development towards the project goals. Plans must be

regularly revised as new information becomes available. Various different types of plan

may be developed to support the main software project plan that is concerned with

schedule and budget.

Types of Project Plans

Plan Description

Quality plan Describes the quality procedures and

standards that will be used in a project.

Validation plan Describes the approach, resources and

schedule used for system validation.

Configuration

management

plan

Describes the configuration management

procedures and structures to be used.

Maintenance

plan

Predicts the maintenance requirements of

the system, maintenance costs and effort

required..

Staff

development

plan.

Describes how the skills and experience of

the project team members will be

developed.

 119

Project Planning Process

The Project Plan sets out the resources available to the project; The work breakdown;

and a schedule for the work. The Project Plan document should have following chapters:

1. Introduction.

2. Project organisation.

3. Risk analysis.

4. Hardware and software resource requirements.

5. Work breakdown.

6. Project schedule

7. Monitoring and reporting mechanisms.

Activities in a project should be organised to produce tangible outputs for management to

judge progress. Milestones are the end-point of a process activity. Deliverables are

project results delivered to customers.

 120

Project Planning Process :

Fig 4.6: Project planning process

Project Scheduling

Project Scheduling is the task of estimating the time and resources needed to complete

the activities and organizing them into a coherent sequence. The steps involved are:

1. Split project into tasks

2. Estimate time & resources required to complete each task

3. Organize tasks concurrently to make optimal use of workforce

4. Minimize task dependencies to avoid delays caused by one task waiting for

another to complete

The entire exercise is dependent on Manager‟s experience dependent on project

manager‟s intuition and experience.

The project scheduling process:

Fig 4.7: Project Scheduling process

 121

Project Activities (tasks) are the basic planning element. Each activity has:

 A duration in calendar days or months,

 An effort estimate, which shows the number of person-days or person-months to

complete the work,

 A deadline by which the activity should be complete,

 A defined end-point, which might be a document, the holding of a review

meeting, the successful execution of all tests, etc.

 Schedule representation is done using graphical notations. They Show project

breakdown into tasks. Tasks should not be too small are too large (They should

take about a week or two.).

Activity charts show task dependencies and the critical path.

Bar charts show schedule against calendar time

Task duration data for example:

Activity Duration

(days)

Dependencies

T1 8

T2 15

T3 15 T1 (M1)

T4 10

T5 10 T2, T4 (M2)

T6 5 T1, T2 (M3)

T7 20 T1 (M1)

T8 25 T4 (M5)

T9 15 T3, T6 (M4)

T10 15 T5, T7 (M7)

T11 7 T9 (M6)

T12 10 T11 (M8)

 122

Corresponding BAR CHART

Fig 4.8: GANTT chart

Corresponding Activity Network:

Fig 4.9: Activity Network

 123

Fig 4.10: Critical Path Method Example

Staff Allocation Chart:

Fig 4.11: Staff Allocation Chart

 124

Project Costing and Estimation

Project Costing Involves answering following fundamental questions:

1. How much effort is required to complete an activity?

2. How much calendar time is needed to complete an activity?

3. What is the total cost of an activity?

• Project estimation and scheduling are interleaved management activities

• Three Parameters involved in computing the cost of software development project

1. Hardware & Software cost (including maintenance)

2. Travel & training costs

3. Effort costs

Costing & Pricing :

– Costing

– The process of estimating that discovers the cost, to the developer, of

producing a software system

– Must be done objectively with the aim of producing the accurate costs

incurred during development

– Must be regularly updated once the project is underway

 Pricing

– The process of deciding the money to be charged to customer for the

software development effort

– It is NOT simply cost + profit

– Broader organisational, economic, political and business considerations

influence the price charged.

Cost Estimation Process:

• Determine size of the product.

• From the size estimate, determine the effort needed.

• From the effort estimate, determine project duration, and cost.

 125

Fig 4.12: Project Costing

Effort Estimation: No simple way to make an accurate estimate of the effort required to

develop a software system. Initial estimates are based on inadequate information in a user

requirements definition. The software may run on unfamiliar computers or use new

technology. The people in the project may be unknown.

Size Estimation is very hard due to the elusive and abstract nature of the product.

Different metrics used for measuring the size of the product and in turns the effort

involved are

1. Size related measures

– Based on some output from the software process like Lines of delivered

source code (LOC), object code size

2. Function-related measures

– Based on an estimate of the functionality of the delivered software like

function points, object points etc.

Two types of estimation techniques that can be used:

– Experience-based techniques - The estimate is based on the manager‟s

experience of past projects and the application domain. Essentially, the

manager makes an informed judgment of what the effort requirements are

likely to be

2. Algorithmic cost modelling

 126

– A formulaic approach used to compute the project effort based on

estimates of product attributes, Such as size, using process

characteristics, like experience of staff involved etc.

Experience-based approaches rely on judgments based on experience of past projects

and the effort expended in these projects. Typically: Several experts on the proposed

software development techniques and the application domain are consulted. They each

estimate the project cost. These estimates are compared and discussed. The estimation

process iterates until an agreed estimate is reached.

However, there is some Problem with experience-based approaches. New software

project may not have much in common with previous projects. Software development

changes very quickly. New projects often use unfamiliar techniques such as web services,

application system configuration or HTML5. Hence, previous experience may not help

you to estimate the effort required.

Algorithmic cost modelling Cost is estimated as a mathematical function of product,

project and process attributes whose values are estimated by project managers: Effort =

A ´ Size
B
 ´ M

A is an organisation-dependent constant, B reflects the disproportionate effort for large

projects and M, a multiplier reflecting product, process & people attributes. The most

commonly used product attribute is code size. Most models are similar but they use

different values for A, B and M.

Estimation Accuracy Estimation depends on size of the software. The size of a software

system can only be known accurately when it is finished. Several factors influence the

final size. Use of reused systems and components; Programming language; Distribution

of system etc... .As the development process progresses then the size estimate becomes

more accurate. The estimates of the factors contributing to B and M are subjective and

vary according to the judgment of the estimator

 127

Effectiveness of algorithmic models Algorithmic models are a systematic way to

estimate the effort required to develop a system. However, they are complex and difficult

to use because of many attributes and considerable scope for uncertainty in estimating

their values. The practical application of algorithmic cost modelling has been limited to a

relatively small number of large companies, mostly working in defence and aerospace

systems engineering.

COCOMO Cost Modelling is an empirical model based on project experience. It is a

Well-documented, „independent‟ model which is not tied to a specific software vendor. It

has a Long history from initial version published in 1981 (COCOMO-81) through various

instantiations to COCOMO 2. COCOMO 2 takes into account different approaches to

software development, reuse, etc.

COCOMO 2 GROUP of Models Incorporates a range of sub-models that produce

increasingly detailed software estimates. The sub-models in COCOMO 2 are:

1. Application composition model.

 - Used when software is composed from existing parts.

2. Early design model.

- Used when requirements are available but design has not yet started.

3. Reuse model.

- Used to compute the effort of integrating reusable components.

4. Post-architecture model.

- Used once the system architecture has been designed and more

information about the system is available

 128

Fig 4.13: COCOMO 2 GROUP of Models

Staffing requirements

Staff required can‟t be computed by dividing the development time by the required

schedule. The number of people working on a project varies depending on the phase of

the project. The more people who work on the project, the more total effort is usually

required. A very rapid build-up of people often correlates with schedule slippage.

Project duration and staffing

Apart from effort estimation, managers must estimate the calendar time required to

complete a project and when staff will be required. COCOMO 2 formula for calendar

time estimation is

TDEV = 3 ´ (PM)(0.33+0.2*(B-1.01)) Where

PM is the effort computation and

 B is the exponent computed as discussed above (B is 1 for the early prototyping

model).

This computation predicts the nominal schedule for the project.. The time required is

independent of the number of people working on the project.

 129

Software Metrics

Software metric is A standard of measure of a degree to which a software system or

process possesses some property. Example : Lines of code in a program, number of

persondays required to develop a component etc.. Metric can be used to quantify

intangible qualities of software product & process. Metric may also be used to predict

product attributes or to control the software process. Product metrics can be used for

general predictions or to identify anomalous components.

Examples of Process metric:

1. The time taken for a particular process to be completed - can be the total time devoted

to the process, calendar time, or the time spent on the process by particular engineers ….

2. The resources required for a particular process - might include total effort in person-

days, travel costs, or computer resources.

3. The number of occurrences of a particular event - like: the number of defects

discovered during code inspection, the number of requirements changes requested, the

number of bug reports in a delivered system & av. nbr of LOC modified in response to a

requirement change etc..

The computation and use of metric is based on the assumptions that :

• A software property can be measured accurately

• The relationship exists between what we can

• measure and what we want to know

• We can only measure internal attributes but are often more interested in external

software attributes

• This relationship has been formalised and validated

– It may be difficult to relate what can be measured to desirable external

quality attributes

 130

Metric Measurement process:

Fig 4.14: Metric measurement process

Metric relationships – Internal & External

Fig 4.15: Metric Relationships

 131

Why metrics are not commonly used in Industry ?

• Impossible to quantify the return on investment of introducing an organizational

metrics program

• No standards for software metrics or standardized processes for measurement and

analysis

• In many companies, software processes are not standardized and are poorly

defined and controlled

• Most work on software measurement is focused on code based metrics and plan-

driven development processes

• Introducing measurement adds additional overhead to processes

Empirical Software Engineering : is a field of academic interest. It is a A research area

in which experiments on software systems and the collection of data about real projects

has been used to form and validate hypotheses about software engineering methods and

techniques. Software measurement and metrics are the basis of empirical software

engineering. Research on empirical software engg., has not had a significant impact on

software engineering practice. It is difficult to relate generic research to a project that is

different from the research study

