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Module – 1:   Syllabus:-  

Why study the theory of computation(ch-1) 

Languages and strings(ch-2) 

A Language Hierarchy(ch-3) 

Computation(ch-4) 

Finite State Machines(ch-5 from 5.1 to 5.10)  

Why study the theory of computation(ch-1) 

Defn: Automata is an abstract machine for modelling computations. 

Why Abstract machines? 

           Abstract machine allows us to model the essential parameters, and 

ignore the non-essential parameters.  

What is computability? 

 It is very difficult to define, but Our notion of computation: Examples are 
Add 2 numbers 
Find the roots of a quadratic equation 
Multiply 2 matrices 
And so on….. 
Important to note that:  all the above have algorithms 
What is not computable: Example- 

• Halting problem of a program:  

    simply write a program that examines other programs to determine if they 

halt or loop forever. Obviously whether or not a program halts depends on the 

data it is fed so in this case we mean program to be code plus the data it 

operates on.   



• Why it not computable:  

     simple answer – No algorithm exists 

Some computations take lot of time to be meaning full: Example 

     Travelling salesman problem 

• When computations are not finished within a reasonable time, such 

computations are useless, also known as NP-problem(non-

deterministic polynomial problems)  

Tractable/Intractable Problems: 

Tractable Problem: a problem that is solvable by a polynomial-time algorithm. 
The upper bound is polynomial. Examples: Quick sort(O(nlogn) 
 Intractable Problem: a problem that cannot be solved by a polynomial-time 
algorithm. The lower bound is exponential. Examples:  Travelling Salesman 
problem  
 

  
Some important applications of automata theory in general: 

Word search and Translation of Natural Languages 
Parity checkers, Vending machines, communication protocols 
Video games 
DNA  
Security 
Artificial Intelligence  
To model organic structures of molecules 
Fluid Flow 



Snowflake and crystal formation 
Chaos theory 
Cosmology 
Financial analysis 
Why not use English to Program? 

• Firstly all Natural Languages like English, Kannada etc are Context 
Sensitive Languages 

• That is to say – meaning depends on the context. 
• Example:  Take a English word “ Charge “ 
• There are many meanings for this word 
• Like  - Cost,  -Flight, - Charge the Battery 
• - Positive Charge, etc  

Characteristics of Natural Languages: 
• In most of the situations – meaning depends on the context. 
• They are developed for communication among the Human beings. 
• Human beings are capable or trained to interpret a sentence depending 

on the situations. 
• Where as, Machine are not in Context. 
• Machine will not be able to interpret depending on the situation.  

Characteristics of Formal Languages: 
• Meaning of a word or sentence does not depend on the context. 
• Words and sentences have only one meaning irrespective of the context. 
• They are simple. 
• Easy to write Compilers and Interpreters 
• They are precise in their meaning. 
• With this Machine do what they are instructed to do  

 
What is the gist of this subject? 
A systematic way of depicting the problem so that it solution can be 
understood and analysed. 
What are the properties of various types of languages.  
         Regular Languages(RL) 
         Context Free languages(CFL) 
         Context Sensitive Languages(CSL) 
         Recursively Enumerable Languages(REL) 
Various types of Automata will be studied: 

• There are different types of automata for recognizing different 
languages 

•  Deterministic Finite Automata -  RL 
•  Pushdown Automata – CFL 



•  Linear Bounded Automata – CSL 
•  Turing Machine – REL 

How to study: 
• Subject is mathematical and lot of logical thinking is required. 
• There are number of Theorems and proofs. 
• Understand the definition – mathematically i.e. Examples are not 

substitute for definitions. 
• Examples are only to make the definition clear. 
• Work out number of problems from various other books. 
• Key to understanding this subject – attempt to work harder problems 

even if you are not able get answers. 
• If you plan to take up - Gate examination for PG studies – you must 

understand it thoroughly. 

Languages and Strings(chapter-2) 
 

Alphabet -  definition: 
Defn: An alphabet is a non-empty, finite set of characters/symbols 

Use  to denote an alphabet set 
Examples 

= { a, b } 

= { 0, 1, 2 } 

 = { a, b, c,…z, A, B, … Z } 

 = { #, $, *, @, & }  
String definition: A string is a finite sequence, possibly empty, of characters 

drawn from some alphabet .  

 is the empty string 

* is the set of all possible strings over an alphabet .  
 
Examples of strings: 

 = {a, b} 

Strings derived from  are….. 

…..  , a, b, aa, ab, ba, bb, aaa, aab, aba, .. 

 = {0, 1} 

Strings derived from  are….. 

…..  , 0, 1, 00, 01, 10, 11, 000, 001, 010, .. 

 = {a} 

Strings derived from  are….. 

…… , a, aa, aaa, aaaa, aaaaa, aaaaa,…. 
 



Functions on Strings 
Length –  to find the length of a string     Operator used  | | 
Concatenation – to join two or more strings. Operator - s||t, or nothing i.e. st  
Replication – strings raised to some power. Operator -  a3        
Reversal – reverse a string 
Operator -  (w)R 
Examples of Length of a string 

• |  | = 0 
• |101| = 3 
• |VTU_Edusat| = 10 

Examples of Concatenation  of a string 
• x = good, y = student 
• Concatenation operation x||y or xy  
• xy = goodstudent  

Examples of Replication of a string 
• a3   = aaa  
• (good)3   = goodgoodgood  

• a0 b3  =  bbb = bbb  
Examples of Reversal  of a string 

• (abc)R  = cba  
• x= ab, y=cd, (xy)R  = dcba  
• xR  yR  =badc  

Relation on Strings 
• Substring: 
• aaa is substring of aaa and also aaabbccc  
• Proper substring:  

Defn: A string s is a proper substring of a string t iff s is a substring of t and s 
≠t 
Examples:  
S = good               then proper substrings are .. 

..... , g, go, goo only 
Prefix and Suffix functions 

• A string s is a prefix of t iff ꓱx ϵ *(t = sx) 

• , a, ab,abb are prefixes of string abb  
• Proper prefix: 

• , a, ab,  are proper prefixes of string abb  

• A string s is a suffix of t iff ꓱx ϵ *(t = xs) 

• , b, bb, abb are suffixes of string abb  
• Proper suffix: 

• , b,bb,are proper suffixes of string abb  



Languages: 
Defn: A language is (finite or infinite) set of strings over a finite alphabet Σ  
Example if     Σ = { a } following languages can be derived 

• Language L1= {a, aaa, aaaaa, aaaaaaa,.......} 

• Language L2= {, aa, aaaa, aaaaaa,.......} 
• Language L3= {a, aaaaa, aaaaaaaaa,.......} 
• Language L4= {a, aaa,  a7, a9 , a13  , ....} 

Note: number of languages that can be derived even from singe alphabet set 
is INFINITE 
Techniques for defining Languages  by enumeration/defining property 
Examples: (by enumeration) 

• Let L = {w ϵ {a, b}* : all string begin with a} 
• L={a, ab, aab, abbbb, ...} 
• Strings not in L are: 

• {b, ba, , bbbbb, baaaaaa, …..} 
• Let L = {w ϵ {a}* : |w| is even} 

• L={, aa, aaaa, aaaaaa, aaaaaaaa, ..} 
• Strings not in L are: 
• {a, aaa, aaaaa, aaaaaaa, …..} //odd no of a’s  

Examples: ( defining property) 
• Let L = {w ϵ {a, b}* : all string ending  in  a} 
• L={a, aba, aaba, bbbba, ...} 
• Strings not in L are: 

• {b, bb, , bbbbb, aaaaaab, …..} 
• Let L = {w ϵ {a}* : |w| mod 3 =1} 
• L={a, a4, a7, a10, ....} 
• Strings not in L are: 

• {, a2,a3, a5, a6, a8, a9, ....}, …..}  
Functions on Languages. 
Languages are sets. Therefore, all set operations like Union, Intersection, 
Difference, and Complement can be applied. 

• Example if Σ = { a } 

• L1 = {, a2,a4, a6, a8, a10, a12, ....} //even no of a’s  
L2 = {a1,a3, a5, a7, a9, a11, .........} //add no of a’s 
Set  Operations on Languages 

• L1 = {, a2,a4, a6, a8, a10, a12, ....} //even no of a’s  
• L2 = {a1,a3, a5, a7, a9, a11, .........} //add no of a’s  
• L1 U L2 = Σ* or  { a }* // union operation 
• L1 ∩ L2 = Ф or {} //  intersection operation 
• L1 - L2  = L1        // difference operation 



• L2 – L1 = L2        // difference operation 
• ~(L1 - L2)  = L2   // complement operation 
• ~(L2 – L1)  = L1  // complement operation 

Concatenation of Languages 
• L1 = {aa, ab} 
• L2 = {xx, yy} 
• L1L2={aaxx, aayy, abxx, abyy} 

Some important results 
• L1 = { } =Ф  
• L2 = {xx, yy} 
• L1L2={} 
• In general for L 

L Ф = ФL = Ф 
Some important results 

• L1 = {}  
• L2 = {xx, yy} 
• L1L2=L2 
• In general for all L 

• L {} = L {} = L 
• (L1L2)L3= L1(L2L3) // associative 
• L1 = { an  | n >= 0}  
• L2 = { bn   | n >= 0} 
• L1L2= {an bm  | n,m >=0} = a*b* // note n & m  
• Kleene star operation  
•  L*={ set of all strings that can be formed by concatenating zero or 

more strings from L}  

•   a* = {, a, aa, aaa, aaaa, aaaaa, ....infinite}  
What is L+  ?   

• L+  = LL*    //assuming L does not have Ꜫ  

• L+  = L* - {}                 
Example  

a* = {, a, aa, aaa, aaaa, aaaaa, ....infinite} 

a+ = a* - {}     
Assigning Meaning to the strings of a Language 
Following codes of C/Java have the same meaning. 
-- int x=4; x++; 
-- int x=4; ++x; 
-- int x=4; x=x+1; 
-- int x=4; x=x-(-1) 

chapter-5 



 
Finite State Machines(FSM) 
Defn: A FSM(DFSM) , M is a quintuple: 
             (K, ∑, δ, s, A) 

• K is a finite set of states, 
• ∑ is the input alphabet, 
• s ϵ K is the start state 
• A   subset  of K is the set of accepting states and 
• δ  is the transition function it maps from: 

                  k x ∑ to k 

 
 
Finite State Machines(FSM) 
On any input if FSM reaches any of the states of A, i.e. accepting states, then 
the input strings is accepted by FSM M. 
Examples: 

• Problem_1: Write a FSM to accept L, where 
• L = {w ϵ {a,b}* | w contains a} 
• L = {a, aa, aaa, baa, baaabbb,……} 
• ~L = {ɛ, b, bb, bbb, bbbb,………….} 
• All strings in L should reach any  - A state 



All strings in ~L should not reach any –A state 
How to write a Transition Diagram: steps are… 
Find the minimum string accepted, this decides the no of states in the FSM, in 
most of the cases 
Then, take longer strings and make them accepted, while modifying the 
transitions, 
Check for minimum strings that are not to be accepted, are really not 
accepted as per the transition diagram. 
See that each state has  transitions equal to the no of alphabets present. 
Two transition on the same alphabet do not  go to different states. 
Solution to the problem-1 

• L = {a, aa, aaa, baa, baaabbb,……} 
• ~L = {ɛ, b, bb, bbb, bbbb,………….} 
• Whenever a string from L is input, it should land in final state. 
• Whenever a string from ~L is input, it should  not land in final state, it 

can be in any other state. 
 
 
 
 
Problem – 2: 
Write a DFSM to accept the language  
    L = { w ϵ {a, b}* | |w| is even length} 
Step 1: Write strings accepted by L i.e. 

L =  { ɛ, aa, bb, ab, ba, aaaa, bbbb, bbaa, baba,..} 
(note : ɛ is even, because its length is 0, which is even) 
~L= { a, b, aaa, bbb, aba, bab, bba, aab, aabbb,..} 

Step 2: since min string are {ɛ, aa}, 2 states are required. 
Step 3: Write Transition Diagram. 



 

 
 

 
 



 
 
Problem – 2 

 
 



Problem – 3 
Write a DFSM to accept the language  
    L = { w ϵ {a, b}* | ab is a substring of w} 
Step 1: Write strings accepted by L i.e. 

L =  {  ab, abab, aaab, abaaa, abbbb, bbababab, babb, bbab, baba,..} 
~L= { a, b, aa, bb, bbb, bba, bba, aaa, bbbbb,..} 

Step 2: since min string is {  ab}, 3 states are required. 
Step 3:Write Transition Diagram. 

 
 

 
 
 



 
 
Problem – 4 
Write a DFSM to accept the language  
    L = { w ϵ {a, b}* | every w ends in b } 
    L =  {  b, ab, abab, aaab, abaab, abbbb, bbababab, babb, bbab, babb,..} 
    ~L= { a, aa, ba, bba, baa, baba, aaa, bbbba,..} 
Step 2: since min string are {  b}, 2 states are required. 
Step 3: Write Transition Diagram. 



 
 

 



 

 

Difficulties with FSMs 



Write a DFSM to accept the language  

    L = { w ϵ {a, b}* | every w ends in ab or ba } 

    L =  {  ab, ba, abab, aaba, abaab, abbba, bbababab, baba, bbab, baba,..} 

   ~L= { a, aa, bb, abb, baa, babb, aaa, bbbbabb,..} 

Step 2: since min string are {ab, ba},  we are not able to guess no of states. 

Note : this is a difficult problem, we end up in spending lot of time to find the 

solution 

  

Write a DFSM to accept the language –another difficult problem 

    L = { w ϵ {a, b}* | 3rd character from right is a} 

L =  {  abb,bbbbabb, ababb, aaba, aaaaa, ababa, bbabababb, baba, bbabb, 

baba,..} 

~L= { a, aa, bb, abbb, baabbb, babba, bbb, bbbbbb,..} 

Step 2: since min string are not there, we are not able to guess no of states. 

Note : this is a difficult problem, we end up in spending lot of time to find the 

solution 

How to solve difficult problems – study Nondeteministic 

finite state machines(NFSM) 

Nondeterministic Finite State Machines(NFSM) –definition: 

Defn: A NFSM , M is a quintuple: 

             (K, ∑, ∆, s, A) 

• K is a finite set of states, 

• ∑ is the input alphabet, 

• s ϵ K is the start state 



• A   subset  of K is the set of accepting states and 

• ∆ is the transition function it maps from: 

                  (K x (∑ U {Ꜫ})) to  K 

Example of  NFSMs 

Write a NFSM to accept the language  

    L = { w ϵ {a, b}* | |w| ends in b} //problem 3 NFSM see below 

 

Write a DFSM to accept the language  

    L = { w ϵ {a, b}* | every w ends in ab or ba } //problem 3 

    L =  {  ab, ba, abab, aaba, abaab, abbba, bbababab, baba, bbab, baba,..} 

  ~L= { a, aa, bb, abb, baa, babb, aaa, bbbbabb,..} 

Step 2: since min string are {ab, ba},  we are not able to guess no of states. 



Note : this is a difficult problem, we end up in spending lot of time to find the 

solution 

 

 

 How to go about, with difficult problems 

Write a DFSM to accept the language  

    L = { w ϵ {a, b}* | 3rd character from right is a} 

    L =  {  abb,bbbbabb, ababb, aaba, aaaaa, ababa, bbabababb, baba, bbabb,    

            baba,..} 

    ~L= { a, aa, bb, abbb, baabbb, babba, bbb, bbbbbb,..} 

Step 2: since min string are not there, we are not able to guess no of states. 



Note : this is a difficult problem, we end up in spending lot of time to find the 

solution 

 

 

 

 

 

Write a NFSM to accept the language  

    L = { w ϵ {a, b}* | every w ends in b } //solution problem – 1 NFSM 

    L =  {  b, ab, abab, aaab, abaab, abbbb, bbababab, babb, bbab, babb,..} 

  ~L= { a, aa, ba, bba, baa, baba, aaa, bbbba,..} 

 



 

Write NFSM to recognize L = { w ϵ {a, b}* | |w| contains ab} 

• Solution: problem – 2 - NFSM 

•  regular expression (a+b)*ab(a+b)* 

 

 



 

Write a NFSM to recognize the language 

L = {w ϵ {a, b}*| w is made up of an optional a followed by aa, zero or more 

b’s} 

• L = { aa, aaa, aab, aaab, aabbb, aaabbb,....} 

• ~L = { a, ba, baa, bbbbb, bbbbbba, .....} 

• Regular expression = re = (a+ Ꜫ)aa(b}* 



Solution: 

 

Procedure to convert NFSM to DFSM 

• Example of  NFSMs 

• Write a NFSM to accept the language  

    L = { w ϵ {a, b}* | |w| ends in b} 

We know all the parameter related to NFSM 

• K is a finite set of states 

• ∑ is the input alphabet 

• s ϵ K is the start state 

• A   subset  of K is the set of accepting states and 

δ  is the transition function.  Consider the following problem 



 

Procedure of conversion 

We need to calculate the following parameter of DFSM, 

note only three parameters, i.e. K’, A’, δ’ need to be 

calculated 

•  K’ is a finite set of states = ?   

• ∑ is the input alphabet =  no change  

• s ϵ K is the start state =   no change 

• A’   subset  of K is the set of accepting states = ? 

• δ'  is the transition function = ?  

• s’=s={1} // note the set notation 

• Compute δ'  

• Active states ={{1}}, consider {1} 

δ‘({1},a)= {1}  .. This exists  



δ‘({1},b)= {1,2} .. This does not exists, add 

New Active states ={{1},{1,2}}, consider {1,2} 

δ‘({1,2},a)= δ({1},a)Uδ({2},a)={1} U Ф ={1} exists 

δ‘({1,2},b)= δ({1},b)Uδ({2},b)={1,2} U Ф ={1,2} exists, 

 No new states are added, therefore Procedure terminates

 

Solution is as follows: 



 

Consider the following problem for which we know the 

NFSM. And apply the procedure to convert it to FSM 

Procedure: 

s’=s={1} // note the set notation 

Compute δ'  

Active states ={{1}}, consider {1} 

δ‘({1},a)= {1,2}  .. add 

δ‘({1},b)= {1,3} ..  add 

Active states ={{1},{1,2},{1,3}}, consider {1,2} 

δ‘({1,2},a)=  {1,2},a)U Ф ={1,2} ..exists 



δ‘({1,2},b)= {1,3}U{4})={1,3,4}  add 

 

Active states ={{1},{1,2},{1,3},{1,3,4}}, consider {1,3} 

δ‘({1,3},a)=  {1,2} U {5} ={1,2,5} ..add 

δ‘({1,3},b)= {1,3}U {} ={1,3}  exists 

Active states ={{1},{1,2},{1,3},{1,3,4}, {1,2,5}}, consider 

{1,3,4} 

δ‘({1,3,4},a)=  {1,2}U {5} U {}={1,2,5} ..exists 

δ‘({1,3,4},b)= {1,3}U{}U{} ={1,3}  exists 



Active states ={{1},{1,2},{1,3},{1,3,4},{1,2,5}}, consider 

{1,2,5} 

δ‘({1,2,5},a)=  {1,2}U {} U{}={1,2,5} ..exists 

δ‘({1,2,5},b)= {1,3}U{4}U{}={1,3,4}  exists 

no new states are added,  therefore Procedure terminates  

write transition table:

 

Write transition diagram. 



 

Rename the states and check for some representative 

strings in the fig given below. 

 

 

Lecture – 5 : chapter 5 

Procedure to convert NFSM to DFSM: 



The problem which we are attempting to convert has Ꜫ 

transition.  

We need to calculate eps for each state using the algorithm 

as follows: 

Eps(q: state)  // algorithm 

 1. result = {q} and some  

 2. while there exists p ϵ result r not ϵ of result and   

             some transition(p, Ꜫ, r) ϵ transition function do: 

                        insert r into result. 

 3. return result. 

Note: It means connect all states that can be reached on Ꜫ 

Example-1 for calculation of eps: 

 



 

Example-2 for calculation of eps: 

 

Problem – 3 – NFSM to DFSM: 

Write a NFSM to recognize the language 

L = {w ϵ {a, b}*| w is made up of an optional a followed by 

aa zero or more b’s} 

L = { aa, aaa, aab, aaab, aabbb, aaabbb,....} 



~L = { a, ba, baa, bbbbb, bbbbbba, .....} 

Regular expression = re = (a+ Ꜫ)aa(b}* 

Write the transition diagram of NFSM 

 

Procedure to convert NFSM to DFSM 

We know all the parameter related to NFSM 

• K is a finite set of states 

• ∑ is the input alphabet 

• s ϵ K is the start state 

• A   subset  of K is the set of accepting states and 

• δ  is the transition function  

Procedure of conversion: 

We need to calculate the following parameter of DFSM, 

note only three parameters, i.e. K’, A’, δ’ need to be 

calculated 



•  K’ is a finite set of states = ?   

• ∑ is the input alphabet =  no change  

• s ϵ K is the start state =   no change 

• A’   subset  of K is the set of accepting states = ? 

δ'  is the transition function = ? 

We need to calculate the following parameter of DFSM, 

note only three parameters, i.e. K’, A’, δ’ need to be 

calculated 

•  K’ is a finite set of states = ?   

• ∑ is the input alphabet =  no change  

• s ϵ K is the start state =   no change 

• A’   subset  of K is the set of accepting states = ? 

• δ'  is the transition function = ?  

Procedure: 

s’=s=eps{1} = {1,2}//  this is start state DFSM 

Compute δ'  

Active states ={{1,2}}, consider {1,2} 

δ‘({1,2},a)= eps{δ(1,a) U δ(2,a)} = eps(2) U eps(2)  

                = {2,3} This state does not exist, therefore add 

δ‘({1,2},b)= eps{δ(1,b) U δ(2,b)} = eps(Ф) U eps(Ф)  



                = Ф, This state does not exist, therefore add 

Now Active states ={{1,2},{2,3},Ф}, consider {2,3} 

δ‘({2,3},a)= eps{δ(2,a) U δ(3,a)} = eps(3) U eps(4) = {3,4} this 

state does not exists, add 

δ‘({2,3},b)=  eps{δ(2,b) U δ(3,b)} = eps(Ф) U eps(Ф) = Ф 

already exists, do not add 

Now Active states ={{1,2},{2,3},Ф,{3,4}}, consider {3,4} 

δ‘({3,4},a)= eps{δ(3,a) U δ(4,a)} = eps(4) U eps(Ф) = {4} this 

state does not exists, add 

δ‘({3,4},b)=  eps{δ(3,b) U δ(4,b)} = eps(Ф) U eps(4) = {4} does 

not exists, add 

Now Active states ={{1,2},{2,3},Ф,{3,4}{4}}, consider {4} 

δ‘({4},a)= eps{δ(4,a)} = eps(Ф) = Ф  this state exists, no need 

to add  

δ‘({4},b)=  eps{δ(4,b)} = eps(4) = {4} this state exists, no 

need to add 

Note: No new states are added, therefore algorithm 

terminates. Now we have all the states of DFSM and its 

transition functions 



 

DFSM is constructed as follows: 

First find out the accepting states of NFSM In this case it is 

{4} 

Look at all final active states of DFSM. In this case it is:  

Active states ={{1,2},{2,3},Ф,{3,4}{4}} 

Find all the states containing state {4} 

        There are two state namely {3,4} and {4} 

        They will accepting states of DFSM 

Transitin diagram- DFSM: 

 



 

FSM to operational systems: 

Now that we know how to design a DFSM if it is simple and 

if it is complex, we write NFSM and convert the same to 

DFSM, using the procedure discussed. 

FSM can be simulated using Software or Hardware 

depending on the requirement. 

In the next section we will discuss simulating using a pseudo 

code. 

Simulation the deterministic FSM: 



 

Hardcoding a Deterministic FSM: 

Until accept or reject do: 

1: s=get-next-symbol. 

    If s=b go to 1. 

    else if s=a then go to 2 

2: s=get-next-symbol 

     If s=a go to 2. 

     else if  s=b then go to 3 

 3: If s=a or b go to 3. 

      else if  s= end-of-file then accept. 

               else reject.  

Simple interpreter for deterministicFSM: 

dfsmsimulate(M:DFSM, w: string) 



1  st = s 

2    Repeat 

2.1 c=get-next-symbol(w) 

2.2 if c ≠ end-of-file then: 

2.2.1 st = δ(st,c) 

       until c = end-of-file           

3 If st ϵ A then accept  

    else reject. 

Trace dfsmsimulate: 

 



 

What is minimization of FSMs: 

 



 

Note : The behaviour of state 1 and 3 are identical as shown 

below: 

• δ (1,a) = 2 

• δ (3,a) = 2 

Therefore there is no need to have two separate states 1 

and 3 and they can be combined as shown in the above 

diagram. Also note that two states are a must and it can not 

be further minimized.  

Lecture – 6: 

Equivalence class: Definition 

An equivalence relation has following properties. 

• It is reflexive 

• It is symmetric 



• It is transitive. 

Example:  

-- relation- has the same birth date 

-- relation- defined by =  

Not an example: relation <= 

Equivalence relations can also be represented by a digraph 

since they are a binary relation on a set. For example the 

digraph of the equivalence relation congruent mod 3 on {0, 

1, 2, 3, 4, 5 , 6} is as shown below. It consists of three 

connected components 

Equivalence class –Example: 

• 0 mod 3 = 0                   The results are {0,1,2} 

• 1 mod 3 = 1 

• 2 mod 3 = 2 

• 3 mod 3 = 0 

• 4 mod 3 = 1 

• 5 mod 3 = 2 

• 6 mod 3 = 0    

{0, 3, 6} ---  have 0 as their remainder 

{1, 4}     ---  have 1 as their remainder 

{2, 5}     ---  have 2 as their remainder 



Defn:Indistinguishable: 

We say that x and y are indistinguishable with respect to L, 

which we will write as  

    x ≈L  y iff:  

                all z ϵ Σ* (either xz and yz  ϵ  L or neither is)    

   consider x=aa  and y = bb and z=ba  

   since aaba and bbba are in L, therefore 

   x ≈L  y 

Defn: Distinguishable: 

We say that x and y are distinguishable with respect to L, iff 

they are not indistinguishable. If x and y are distinguishable 

then there exists at least one string z, such that one but not 

both of xz and yz is in L  

   consider x=aa  and y = a and z=ba  

   since aaba and aba  both are in not L,  

   aaba is in L and aba is not in L 

• Note : indistinguishable is a equivalence class 

Equivalence class-two partitions: 



 

L =  { ɛ, aa, bb, ab, ba, aaaa, bbbb, bbaa, baba,..} 

All the elements are indistinguishable  

~L= { a, b, aaa, bbb, aba, bab, bba, aab, aabbb,..} 

All the elements are indistinguishable. 

For example aa and a are distinguishable, because 

Take an element bb from the language L, aabb is in L, abb  

is not in L , therefore they are not in the same  eq.class  

For example aa and bb are indistinguishable, because 

Take an element bb from the language L, aabb is in L, bbbb  

is also in L , therefore they are  in the same  eq.class  

Equivalence class-three partitions. 



 

All the strings of L belong to state 3. 

How to separate ~L into two separate states. 

What is the basis?  

• [1] = {Ꜫ, b, bb, bbb, bbbb, ........} 

• [2] =  {a ,aa, aaa, aaaa, .......}  

For example consider b from block-1 and a from block-2, 

take b from Σ* 

bb is not in L whereas  ab is in L, therefore they  

are not indistinguishable, i.e. Distinguishable 

• Equivalence class partitions:  



In general equivalence partitions of L and ~L, 

Can further partitions. 

In the last example we saw partition of ~L 

in to 2 eq classes. 

We will see now how L can be partitioned into more than 

one block or eq. Classes. 

Equivalence class-more partitions 

Find the equivalence partition of L , where  

L = {w ϵ {a, b} | w has no adjacent characters are the same} 

// problem 5.26(p-89) 

L= {ɛ, a, aba, ababa, b, ab, bab, abab,….}  

~L = { aa, abaa, ababb, bbbbbb, aaaa, ....} 

Check any of L or ~L can be further separated, 

Consider L= {ɛ, a, aba, ababa, b, ab, bab, abab,….} and select 

a and b 

Also select a from Σ* 

Test: aa is in ~l and ba is L . Therefore L is not an eq class, it 

should be further refined. 

• [1] = {a, aba, ababa,...etc will get separated} 

• [2] = {b, ab, bab, abab, ......} 



• Consider L= {ɛ, a, aba, ababa, b, ab, bab, abab,….} and 

select ɛ and a 

• Also select a from Σ* 

• Ɛa = a is   in L, but 

• aa is not in L, therefore ɛ and a are not in the same eq. 

class, finally, 

• [1] = {ɛ} 

• [2] = {a, aba, ababa,  …} 

• [3] = {b, ab, bab, abab, …} 

• [4] = {aa, abaa, ababb,…..} 

The transition diagram for above partitions is …… 

Equivalence class-solution. 

Solution to the problem : (workout on the board.) 

Finally how to know that DFSM is not possible. i.e. When 

the partitions are infinite, no DFSM is possible. 

• Example: L = {an  bn  | n > 0}    

This will have infinite partitions, no DFSM is possible, and L 

is not regular language. 

Theorem 5.6(Myhill-Nerode): 

Theorem: A language is regular iff the number of eq. Classes 

of L is finite. 



Minimization of FSMs-problem -1:

 

Procedure for Minimization of DFSM: 
Partition the states in to non-accepting and accepting states. 
{2} and {1,3} 
Check whether they are distinguishable? 
Workout(on the board) 
Minimizied   FSM-problem-1 
 
 

 



Minimization of FSMs -Problem-2: 

 

Start with what is clearly distinguishable i.e. 

Non-Accepting states and  accepting states 

• {1, 2, 6}  and {3, 4, 5} check further if they are  

• Distinguishable  input  

Continue subdividing state, until all distinguishable states 

are separated. 

Lecture:7 

Moore Machine(transducer) 



Transducer: A  device that converts variations in a physical 

quantity, such as pressure or brightness, into an electrical 

signal, or vice versa. 

Defn: A Moore machine, M is a seven tuple: 

(K, ∑, O, δ, D, s, A), where 

• K is a finite set of states, 

• ∑ is the input alphabet, 

• O is the output alphabet,  

• s ϵ K is the start state 

• A   subset  of K is the set of accepting states(not imp) 

• δ is the transition function it maps from K x ∑ to K 

• D is the display or output function from K  to (O)* 

Example of Moore Machine: 

 



Transition table for the Moore Machine( see fig a 

bove): 

 

 

 

 

 

 

 

Mealy  machine(transducer): 

Defn: A Mealy  machine, M is a six tuple: 

(K, ∑, O, δ, s, A), where 

• K is a finite set of states, 

• ∑ is the input alphabet, 

• O is the output alphabet,  

• s ϵ K is the start state 

• A   subset  of K is the set of accepting states and 

• δ is the transition function it maps from 

    (K x ∑ ) to (K x O*) 

Note: output is associated with each input. 



Example of Mealy machine:

 

Transition table: 

 

Computation(chapter 4): 

In this chapter, effort is made to: 

Define problems as languages to be decided 



Define programs as state machines whose input is a string 

and whose output is accept or reject 

• Key ideas : 

1. Decision procedures 

2. Non determinism 

3. Function on languages.  

Decision Procedures 

Defn: A decision problem is one for which we must  make a 

yes/no decision. 

A decision procedure is an algorithm to solve a decision 

problem. 

It a program whose result is a Boolean value. 

In order to return a Boolean value, a decision procedure 

must be guarantee to halt on all inputs 

Decision procedures are to answer question such as: 

  -- Is string s in Language L? 

  -- Given a machine, does it accept any string? 

  -- Given two machines, do they accept the same strings? 

  -- Given a machine, is it the smallest m/c that  does its job? 

Three imp things about Procedures: 

1.Does there exist a decision procedure(algorithm) 



2.If any decision procedures exist, find one 

3. If exists, find the most efficient one, and how efficient it 

is? 

Decision procedures are programs, and they must have two 

correctness properties: 

1.  Program must be guaranteed to halt.   

2.  The answer must be correct. 

Example – 1: 

Checking for even numbers: 

even(x: integer)= 

         If (x/2)*2=x then return True 

         else return False. 

If x=3 then x/2=1 and 1*2 != 3 therefore “false” 

If x=8 then x/2=4 and 4*2 = 8 therefore “true” 

Example – 2: 

Checking for Prime numbers: 

prime(x: positive integer) = 

          For i = 2 to ceiling(sqrt(x)) do: 

               If (x/i)*i = x then return False 

          return True 



Assume x = 7 then ceiling(sqrt(x))= ceiling(2.65) = 3 

i = 2; 7/2*2 != 7 next iteration 

i = 3; 7/3*2 != 7 next iteration(no more iterations) 

Returns True 

Example-3: 

Checking for Programs that halt on a particular input. 

haltOnw(p: program, w: string)= 

        1. Simulate the execution of p on w 

        2. If the simulation halts return True 

            else return False. 

note: 1.  this is not a procedure, because it never returns 

False. 

          2. No decision procedure exists for this.  

Determinism and non determinism: 

Consider a program: 

Choose(action 1;; 

               action 2;; 

               .... 

               action n;; ) 

Observation on choose: 



Returns some successful value, if there is one 

If there is no successful value, the choose will: 

- Halt and return False if all the actions halt and return       

  False 

     - Fail to halt if any of the actions fails to halt. 

     (note that this has a potential to return successful value, 

it may be taking more time) 

Deterministic and non Deterministic: 

If a program does not use choose then it is deterministic. 

If a program includes choose then it is non deterministic. 

Functions on Languages and Programs: 

The function chop: 

chop(L): is all the odd length strings in L with their middle 

character chopped out. 

The function firstchars: 

firstchars(L): determines the first characters by looking at all 

strings in L 

Examples of chop(L): 

 



 

 

 

 

 

 

 

 

Examples of firstchars(L) 

 
Closure of Languages: 



 

 

 

 

 

 

 

Langauage Hierarchy: 

Hierarchy of Languages and corresponding automata 

Regular languages:                     FSMs 

Context-free languages:             PDAs 

D(decidable) Languages:           Turing machine  

SD(semi decidable) languages: Turing machine  

Importance of classification: 

The factors are: 

1.Computational efficiency: As function of input length 

FSMs  -   Linear with respect to input string 

PDAs  -   cube of the length of input string 

TM      -    exponentially with respect to input   

                 String 



2.Decidability: Answer to the questions  

FSM -  accepts some string?  

FSM  -  is it minimal? 

FSMs-  are two FSMs identical? 

PDAs-  only some of the above can be   

             answered 

TM     -  none of the above can be answered 

3.Clarity: tools that enable analysis- exist? 

FSM - yes  

PDA - yes 

TM   - none   

 ..............................  End of Module – 1  ................. 
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