

 1

Advanced Java and J2EE 17CS553
MODULE 1

Enumerations:

Versions of Java prior to JDK 5 lacked few features.

Three relatively recent additions to the Java language after JDK 5: enumerations,

autoboxing, and annotations (also referred to as metadata)

• An enumeration is a list of named constants

• Java enumerations appear similar to enumerations in other languages

• In Java, an enumeration defines a class type - By making enumerations into

classes, the capabilities of the enumeration are greatly expanded. For example, in

Java, an enumeration can have constructors, methods, and instance variables

Some examples:

– dayOfWeek: SUNDAY, MONDAY, TUESDAY, …

– month: JAN, FEB, MAR, APR, …

– gender: MALE, FEMALE

– title: MR, MRS, MS, DR

– appletState: READY, RUNNING, BLOCKED, DEAD

In the past, enumerations were usually represented as integer values:

public final int SPRING = 0;

public final int SUMMER = 1;

public final int FALL = 2;

public final int WINTER = 3;

Now

enum Season { WINTER, SPRING, SUMMER, FALL }

Example: An enumeration of apple varieties.

enum Apple{ Jonathan, GoldenDel, RedDel, Winesap, Cortland }

The identifiers Jonathan, GoldenDel, and so on, are called enumeration constants.

 Each is implicitly declared as a public, static final member of Apple.

Type of the enumeration - Apple in this case.

Thus, in the language of Java, these constants are called self-typed, in which “self” refers

to the enclosing enumeration.

 2

However, even though enumerations define a class type, you do not instantiate an enum

using new.

• Declare and use an enumeration variable

 Apple ap;

Because ap is of type Apple, the only values that it can be assigned (or can contain) are

those defined by the enumeration.

 For example, this assigns ap the value RedDel:

ap = Apple.RedDel;

Usage:

Two enumeration constants can be compared for equality by using the = = relational

operator.

if(ap == Apple.GoldenDel)

Use an enum to control a switch statement.

switch(ap)

{

 case Jonathan:

 case Winesap:

}

The values() and valueOf() Methods:

All enumerations automatically contain two predefined methods:

values() and valueOf().

public static enum-type[] values()

The values() method returns an array that contains a list of the enumeration constants

public static enum-type valueOf(String str)

The valueOf() method returns the enumeration constant whose value corresponds to the

string passed in str.

Sample Program:

 3

 4

Java Enumerations Are Class Types:

• Don’t instantiate an enum using new,

• Has much the same capabilities as other classes.

• The fact that enum defines a class gives the Java enumeration extraordinary

power.

• For example, you can give them constructors, add instance variables and

methods, and even implement interfaces.

• It is important to understand that each enumeration constant is an object of its

enumeration type.

• Thus, when you define a constructor for an enum, the constructor is called when

each enumeration constant is created.

• Also, each enumeration constant has its own copy of any instance variables

defined by the enumeration.

An Example –

 5

• The arguments to the constructor are specified, by putting them inside parentheses

after each constant, as shown here:

Jonathan(10), GoldenDel(9), RedDel(12), Winesap(15), Cortland(8);

• These values are passed to the p parameter of Apple(), which then assigns this

value to price.

• Because each enumeration constant has its own copy of price, you can obtain the

price of a specified type of apple by calling getPrice()

 Apple.Winesap.getPrice()

- The preceding example contains only one constructor.

• An enum can offer two or more overloaded forms, just as can any other class.

 6

Enumerations Inherit Enum:

• All enumerations automatically inherit one class: java.lang.Enum.

• String toString() returns the name of this enum constant, as contained in the

declaration

• boolean equals(Object other) returns true if the specified object is equal to this

enum constant

• int compareTo(E o) compares this enum with the specified object for order;

returns a negative integer, zero, or a positive integer as this object is less than,

equal to, or greater than the specified object

• static enum-type valueOf(String s) returns the enumerated object whose name is s

• static enum-type[] values() returns an array of the enumeration objects

• final int ordinal() obtain a value that indicates an enumeration constant’s position

in the list of constants. This is called its ordinal value.

Using ordinal method:

 7

Fig 1: Primitive Types vs Objects to hold basic data types

• Note that a primitive variable contains the value itself, but an object variable

contains the address of the object, that is, a ‘reference’ to the object.

• An object reference can be thought of as a pointer to the location of the object.

Rather than dealing with arbitrary addresses, we often depict a reference

graphically.

• Java uses primitive types (also called simple types), to hold the basic data types

supported by the language.

• Primitive types, rather than objects, are used for these quantities for the sake of

performance.

• Using objects for these values would add an unacceptable overhead to even the

simplest of calculations.

• The primitive types are not part of the object hierarchy, and they do not inherit

Object.

Need of Type Wrappers:

• They convert primitive data types into objects. Objects are needed if we wish to

modify the arguments passed into a method.

• The classes in java.util package handles only objects and hence wrapper classes

help in this case also.

• Data structures in the Collection framework, such as ArrayList and Vector, store

only objects (reference types) and not primitive types.

• An object is needed to support synchronization in multithreading.

• They relate directly to Java’s autoboxing feature.

Wrapper Classes:
• Java provides type wrappers, which are classes that encapsulate a primitive type

within an object

• The java.lang package contains wrapper classes that correspond to each primitive

type.

"Steve Jobs" name1

num1 38

https://www.geeksforgeeks.org/arraylist-in-java/
https://www.geeksforgeeks.org/vector-vs-arraylist-java/

 8

• Wrapper classes also contain static methods that help manage the associated type.

For example, the Integer class contains a method to convert an integer stored in a String

to an int value:

int num;

num = Integer.parseInt(str);

Or

float fltnum;

fltnum = Float.parseFloat(str);

Character:

• Character is a wrapper around a char.

• The constructor for Character is

 Character(char ch)

Here, ch specifies the character that will be wrapped by the Character object being

created.

Example: Character c=new Character('@');

• Beginning with JDK 9, the Character constructor has been deprecated and

recommended to use the static method valueOf()to obtain a Character object.

 static Character valueOf(char ch)

It returns a Character object that wraps ch.

• To obtain the char value contained in a Character object, call charValue(),

 char charValue()

It returns the encapsulated character.

Example: char c1=c.charValue();

Boolean:

• Boolean is a wrapper around boolean values.

Constructors: Boolean(boolean boolValue)

 9

Here, boolValue must be either true or false

 Boolean(String boolString)

Here, if boolString contains the string "true" (in uppercase or lowercase), then the new

Boolean object will be true. Otherwise, it will be false.

Example: Boolean b=new Boolean(true);

• Beginning with JDK 9, the Boolean constructors have been deprecated and

recommended to use the static method valueOf()to obtain a Boolean object.

static Boolean valueOf(boolean boolValue)

static Boolean valueOf(String boolString)

Each returns a Boolean object that wraps the indicated value.

• To obtain a boolean value from a Boolean object, use booleanValue(),

 boolean booleanValue()

It returns the boolean equivalent of the invoking object.

Example: boolean b1=b.booleanValue();

The Numeric Type Wrappers:

• The most commonly used type wrappers that represent numeric values.

 Byte, Short, Integer, Long, Float, and Double.

• All of the numeric type wrappers inherit the abstract class Number.

• Number declares methods that return the value of an object in each of the

different number formats.

 1. byte byteValue() 2. double doubleValue()

 3. float floatValue() 4. int intValue()

 5. long longValue() 6. short shortValue()

• These methods are implemented by each of the numeric type wrappers

• All of the numeric type wrappers define constructors that allow an object to be

constructed from a given value, or a string representation of that value.

 10

Example: constructors defined for Integer:

 Integer(int num)

 Integer(String str)

Note: If str does not contain a valid numeric value, then a NumberFormatException is

thrown.

• Beginning with JDK 9, the numeric type-wrapper constructors have been

deprecated and it is recommended to one of the valueOf() methods to obtain a

wrapper object.

static Integer valueOf(int val)

Static Integer valueOf(String valStr) throws NumberFormatException

Example: Integer iOb = Integer.valueOf(100);

• The valueOf() method is a static member of all of the numeric wrapper classes.

• All numeric classes support forms that convert a numeric value or a string into an

object.

• All of the type wrappers override toString(),It returns the human-readable form of

the value contained within the wrapper.

• This allows you to output the value by passing a type wrapper object to println(),

for example, without having to convert it into its primitive type.

 11

Program demonstrates how to use a numeric type wrapper to encapsulate a value and then

extract that value.

Output:

100 100

Summary:

• The process of encapsulating a value within an object is called boxing

• The process of extracting a value from a type wrapper is called unboxing

• The same general procedure used by the preceding program to box and unbox

values has been available for use since the original version of Java.

• However, today, Java provides a more streamlined approach – Auto boxing &

Auto unboxing

Autoboxing and Unboxing:

Question: There is no call to a method such as charValue() or valueOf(). Is the following

code legal?

char a = ‘a’;

Character b = new Character(‘b’);

b = a;

a = b;

char c = new Character(‘c’);

Character d = ‘d’;

Answer: Yes! The code is perfectly valid.

• Autoboxing is the process by which a primitive type is automatically

encapsulated (boxed) into its equivalent type wrapper whenever an object of that

type is needed.

• There is no need to explicitly construct an object.

• Auto-unboxing is the process by which the value of a boxed object is

automatically extracted (unboxed) from a type wrapper when its value is needed.

 12

• For example – conversion of int to Integer, long to Long, double to Double etc.

Advantages:

• Autoboxing and auto-unboxing greatly streamline the coding of several

algorithms, removing the tedium of manually boxing and unboxing values.

• They also help prevent errors.

• Moreover, they are very important to generics, which operate only on objects.

• Finally, autoboxing makes working with the Collections Framework much

easier.

Example:

Integer iOb = 100; // autobox an int

• With autoboxing, it is not necessary to manually construct an object in order to

wrap a primitive type.

• You need only assign that value to a type-wrapper reference.

• Java automatically constructs the object for you.

Notice that the object is not explicitly boxed. Java handles this for you, automatically

int i = iOb; // auto-unbox

• To unbox an object, simply assign that object reference to a primitive-type

variable .

• Java automatically extracts value from boxed object.

• There is no need to call a method such as intValue() or doubleValue().

100 iob

100 i

 13

Autoboxing & Methods:

Autoboxing/unboxing takes place with method parameters and return values.

static int m(Integer v)

{

 return v;

 }

 Integer iob= m(100);

Output:
Displays 100 100

 14

Autoboxing/Unboxing in Expressions:

• Within an expression, a numeric object is automatically unboxed.

• The outcome of the expression is reboxed, if necessary.

Output:

Mix of numeric objects in an expression:

• Auto-unboxing also allows you to mix different types of numeric objects in an

expression.

 Integer iob1, iob2;
 int i;
 iob1=100;

 ++iob1;
 iob2= iob1 + (iob1 /3);
 i= iob1 + (iob1 / 3);

 15

• Once the values are unboxed, the standard type promotions and conversions are

applied.
Integer iob = 100;

Double dob = 12.6;

dob = iob + dob;

Output:

Integer numeric objects to control a switch statements:

Autoboxing/Unboxing Boolean and Character Values:

• Java also supplies wrappers for boolean and char. Boolean and Character.

• Autoboxing/unboxing applies to these wrappers, too.

• Because of auto-unboxing, a Boolean object can now also be used to control any

of Java’s loop statements.

• When a Boolean is used as the conditional expression of a while, for, or do/while,

it is automatically unboxed into its boolean equivalent.

Example:

Boolean b; while (b) { //..

 16

Output:

Autoboxing/Unboxing Helps Prevent Errors:

 17

A Word of Warning:

• Restrict use of the type wrappers to only those cases in which an object

representation of a primitive type is required.

• Each autobox and auto-unbox adds overhead that is not present if the primitive

type is used.

Summary:

• Java provides a more streamlined approach – Auto boxing & Auto unboxing -

Beginning with JDK 5.

• Autoboxing and auto-unboxing greatly streamline the coding of several

algorithms, removing the tedium of manually boxing and unboxing values.

• Makes easier to work with Generics, Collection Framework.

Quiz:

Is it valid?
int sum(int a, int b)

 {

 return a + b;

 }

Integer a = sum(new Integer(1), 2);

Answer: YES

Object Identity(Object x)

{

return x;

}

double c = Identity(new Double(1.0));

• Answer: error: incompatible types: Object cannot be converted to double

 double c = Identity(new Double(1.0));

To resolve the issue: double c = (Double)Identity(new Double(1.0));

 18

Annotations (Metadata):

• Since JDK 5, Java has supported a feature that enables you to embed

supplemental information into a source file.

• This information, called an annotation, does not change the actions of a program.

• This information can be used by various tools during both development and

deployment.

• The term metadata is also used to refer to this feature, but the term annotation is

the most descriptive and more commonly used.

An annotation is created through a mechanism based on the interface.

Example. Here is the declaration for an annotation called MyAnno:

// A simple annotation type.

@interface MyAnno

{

String str();

 int val();

}

– @ that precedes the keyword interface - This tells the compiler that an annotation

type is being declared.

– There are two members str() and val().

– All annotations consist solely of method declarations.

– Does not contain method implementation.

– Java implements these methods.

– The methods act much like fields

– An annotation cannot include an extends clause

More about Annotations:

• All annotation types automatically extend the Annotation interface (Super-

interface).

• It is declared within the java.lang.annotation package.

• It overrides hashCode(), equals(), and toString(), which are defined by Object.

It also specifies annotationType(), which returns a Class object that represents the

invoking annotation.

Usage – Foreword:

• Any type of declaration can have an annotation associated with it.

• For example, classes, methods, fields, parameters, and enum constants can be

annotated.

• Even an annotation can be annotated.

• In all cases, the annotation precedes the rest of the declaration.

• When you apply an annotation, you give values to its members

Example- Usage

MyAnno being applied to a method declaration.

// Annotate a method.

 19

 @MyAnno(str = "Annotation Example", val = 100)

public static void myMeth()

{

…. }

Specifying a Retention Policy:

• A retention policy determines at what point an annotation is discarded.

• Java defines three such policies, which are encapsulated within the

java.lang.annotation.RetentionPolicy enumeration

• They are SOURCE, CLASS, and RUNTIME

Retention Policy:

• SOURCE is retained only in the source file and is discarded during compilation.

• CLASS is stored in the .class file during compilation. It is not available through

the JVM during run time.

• RUNTIME is stored in the .class file during compilation and is available through

the JVM during run time.

Thus, RUNTIME retention offers the greatest annotation persistence.

• A retention policy is specified for an annotation by using one of Java’s built-in

annotations: @Retention.

@Retention(retention-policy)

• Here, retention-policy must be one of the previously discussed enumeration

constants.

• If no retention policy is specified for an annotation, then the default policy of

CLASS is used.

Retention policy – Usage

MyAnno uses @Retention to specify the RUNTIME retention policy.

Thus, MyAnno will be available to the JVM during program execution.

@Retention(RetentionPolicy.RUNTIME)

@interface MyAnno

{ String str(); int val();

 }

Obtaining Annotations at Run Time by Use of Reflection
• Although annotations are designed mostly for use by other development or

deployment tools, if they specify a retention policy of RUNTIME, then they can

be queried at run time by any Java program through the use of reflection.

• Reflection is the feature that enables information about a class to be obtained at

run time.

• The reflection API is contained in the java.lang.reflect package.

Steps to use Reflection:

• The first step to using reflection is to obtain a Class object that represents the

class whose annotations you want to obtain

 20

• Class is one of Java’s built-in classes and is defined in java.lang.

• One of the easiest is to call getClass(), which is a method defined by Object final

Class<?> getClass()

It returns the Class object that represents the invoking object

 <?> - This is related to Java’s generics feature

• If you want to obtain the annotations associated with a specific item declared

within a class,

• First obtain an object that represents that item.

• For example, Class supplies (among others) the getMethod() - return objects of

type Method

• getField() - return objects of type Field

• getConstructor() – return objects of type Constructor

Example:

An example that obtains the annotations associated with a method

• First obtain a Class object that represents the class

• Then call getMethod() on that Class object, specifying the name of the method

• getMethod() has this general form:

 Method getMethod(String methName, Class<?> ... paramTypes)

1. The name of the method is passed in methName.

2. If the method has arguments, then Class objects representing those types must

also be specified by paramTypes

3. If the method can’t be found, NoSuchMethodException is thrown.

getAnnotation()

• From a Class, Method, Field, or Constructor object, you can obtain a specific

annotation associated with that object by calling getAnnotation().

General form :

<A extends Annotation> getAnnotation(Class<A> annoType)

annoType is a Class object that represents the annotation in which you are interested.

The method returns a reference to the annotation.

Using this reference, you can obtain the values associated with the annotation’s members.

The method returns null if the annotation is not found, which will be the case if the

annotation does not have RUNTIME retention.

 21

• In the preceding example, myMeth() has no parameters. Thus, when getMethod(

) was called, only the name myMeth was passed.

• To obtain a method that has parameters, you must specify class objects

representing the types of those parameters as arguments to getMethod().

 22

Output:

The output from this version is shown here:

 Two Parameters 19

myMeth() takes a String and an int parameter.

To obtain information about this method,

getMethod() must be called as shown here:

Method m = c.getMethod("myMeth", String.class, int.class);

Here, the Class objects representing String and int are passed as additional arguments.

Obtaining Annotations at Run Time by Use of Reflection:

• Although annotations are designed mostly for use by other development or

deployment tools, if they specify a retention policy of RUNTIME, then they can

be queried at run time by any Java program through the use of reflection.

• Reflection is the feature that enables information about a class to be obtained at

run time.

• The reflection API is contained in the java.lang.reflect package.

Steps to use Reflection:

• The first step to using reflection is to obtain a Class object that represents the

class whose annotations you want to obtain

 23

• Class is one of Java’s built-in classes and is defined in java.lang.

• One of the easiest is to call getClass(), which is a method defined by Object

final Class<?> getClass()

It returns the Class object that represents the invoking object

 <?> - This is related to Java’s generics feature

• If you want to obtain the annotations associated with a specific item declared

within a class,

• First obtain an object that represents that item.

• For example, Class supplies (among others) the getMethod() - return objects of

type Method

• getField() - return objects of type Field

• getConstructor() – return objects of type Constructor

Example:

An example that obtains the annotations associated with a method

• First obtain a Class object that represents the class

• Then call getMethod() on that Class object, specifying the name of the method

• getMethod() has this general form:

 Method getMethod(String methName, Class<?> ... paramTypes)

1. The name of the method is passed in methName.

2. If the method has arguments, then Class objects representing those types must

also be specified by paramTypes

 If the method can’t be found, NoSuchMethodException is thrown.

getAnnotation()

• From a Class, Method, Field, or Constructor object, you can obtain a specific

annotation associated with that object by calling getAnnotation().

General form :

<A extends Annotation> getAnnotation(Class<A> annoType)

annoType is a Class object that represents the annotation in which you are interested.

The method returns a reference to the annotation.

Using this reference, you can obtain the values associated with the annotation’s members.

The method returns null if the annotation is not found, which will be the case if the

annotation does not have RUNTIME retention.

 24

Output:

The output from this version is shown here:

 Two Parameters 19

myMeth() takes a String and an int parameter.

To obtain information about this method,

getMethod() must be called as shown here:

Method m = c.getMethod("myMeth", String.class, int.class);

Here, the Class objects representing String and int are passed as additional arguments.

 25

Obtaining All Annotations:

• You can obtain all annotations that have RUNTIME retention that are associated

with an item by calling getAnnotations() on that item.

Annotation[] getAnnotations()

• It returns an array of the annotations.

• getAnnotations() can be called on objects of type Class, Method, Constructor,

and Field, among others

Example:

 26

The AnnotatedElement Interface:

• The methods getAnnotation() and getAnnotations() are defined by the

AnnotatedElement interface, which is defined in java.lang.reflect

• AnnotatedElement defines several other methods.

• Two have been available since JDK 5. The first is getDeclaredAnnotations(),

which has this general form:

Annotation[] getDeclaredAnnotations()

It returns all non-inherited annotations present in the invoking object.

• The second is isAnnotationPresent(), which has this general form:

boolean isAnnotationPresent(Class<? extends Annotation> annoType)

• It returns true if the annotation specified by annoType is associated with the

invoking object. It returns false otherwise.

Using Default Values:

• You can give annotation members default values that will be used if no value is

specified when the annotation is applied

type member() default value ;

• Here, value must be of a type compatible with type.

// An annotation type declaration that includes defaults.

@Retention(RetentionPolicy.RUNTIME)

 @interface MyAnno

{

String str() default "Testing";

 27

int val() default 9000;

}

Marker Annotations:

• A marker annotation is a special kind of annotation that contains no members.

• Its sole purpose is to mark an item.

• Thus, its presence as an annotation is sufficient.

• The best way to determine if a marker annotation is present is to use the method

isAnnotationPresent(), which is defined by the AnnotatedElement interface.

• Because a marker interface contains no members, simply determining whether it

is present or absent is sufficient.

• The output, shown here, confirms that @MyMarker is present:

 MyMarker is present.

• In the program, notice that you do not need to follow @MyMarker with

parentheses when it is applied.

• Thus, @MyMarker is applied simply by using its name, like this: @MyMarker

• It is not wrong to supply an empty set of parentheses, but they are not needed.

 28

Single-Member Annotations:

• A single-member annotation contains only one member.

• It works like a normal annotation except that it allows a shorthand form of

specifying the value of the member.

• When only one member is present, you can simply specify the value for that

member when the annotation is applied—you don’t need to specify the name of

the member.

• However, in order to use this shorthand, the name of the member must be value.

Output:

• As expected, this program displays the value 100. In the program, @MySingle is

used to annotate myMeth(), as shown here:

@MySingle(100)

• Notice that value = need not be specified.

• You can use the single-value syntax when applying an annotation that has other

members, but those other members must all have default values.

For example, here the value xyz is added, with a default value of zero:

@interface SomeAnno

 29

{

int value();

int xyz() default 0;

}

Single-Member Annotations:

• In cases in which you want to use the default for xyz, you can apply

@SomeAnno, as shown next, by simply specifying the value of value by using the

single-member syntax.

• @SomeAnno(88)

• In this case, xyz defaults to zero, and value gets the value 88. Of course, to

specify a different value for xyz requires that both members be explicitly named,

as shown here:

• @SomeAnno(value = 88, xyz = 99)

• Remember, whenever you are using a single-member annotation, the name of that

member must be value.

The Built-In Annotations:

• Java defines many built-in annotations. Most are specialized, but nine are general

purpose.

• Of these, four are imported from java.lang.annotation:

• @Retention

• @Documented,

• @Target, and @Inherited.

• Five—@Override, @Deprecated, @FunctionalInterface, @SafeVarargs, and

@SuppressWarnings

—are included in java.lang

• @Retention- It specifies the retention policy

• @Documented- is a marker interface that tells a tool that an annotation is to be

documented

• The @Target annotation specifies the types of items to which an annotation can

be applied

 @Target takes one argument, which is an array of constants of the ElementType

enumeration. This argument specifies the types of declarations to which the annotation

can be applied.

 30

• You can specify one or more of these values in a @Target annotation. To specify

multiple values, you must specify them within a braces-delimited list. For

example, to specify that an annotation applies only to fields and local variables,

you can use this @Target annotation:

@Target({ ElementType.FIELD,ElementType.LOCAL_VARIABLE })

• @Inherited - causes the annotation for a superclass to be inherited by a subclass

• @Override - annotation that can be used only on methods. A method annotated

with @Override must override a method from a superclass. If it doesn’t, a

compile-time error will result.

• @Deprecated - It indicates that a declaration is obsolete and has been replaced by

a newer form.

• @FunctionalInterface - marker annotation added by JDK 8 and designed for use

on interfaces. It indicates that the annotated interface is a functional interface. A

functional interface is an interface that contains one and only one abstract method.

Functional interfaces are used by lambda expressions.

• @SafeVarargs -is a marker annotation that can be applied to methods and

constructors. It indicates that no unsafe actions related to a varargs parameter

occur

• @SuppressWarnings @SuppressWarnings specifies that one or more warnings

that might be issued by the compiler are to be suppressed. The warnings to

suppress are specified by name, in string form.

Acknowledgment:

References:

Herbert Schildt: JAVA the Complete Reference, 7th/9th Edition, Tata McGraw

Hill, 2007.

Web References:

https://docs.oracle.com/

https://www.geeksforgeeks.org/

-For both content creation and delivery.

https://docs.oracle.com/javase/tutorial/java/generics/why.html
https://www.geeksforgeeks.org/generics-in-java/

