
 Subject: Computer Programming in C and data Structures

 Module(1&2) e-notes

What is a Computer?

• Computer

– Device capable of performing computations and making logical decisions

– Computers process the data under the control of sets of instructions called

computer programs

Computer Consists of two parts they are Hardware and Software

• Hardware

– Various devices comprising a computer

– Keyboard, screen, mouse, disks, memory, CD-ROM, and processing units, mother

board etc..

• Software

– Programs that run on a computer

Typical structure of a computer looks like

Working principle of a computer involves following steps

Instruction phase

– Step 1: Fetch instruction from the memory

– Step 2: Decode instruction

Execution phase

– Step 3: Execute the instruction

– Step 4: Store the results

 Now the question is how to write such Instructions?

 Hence we require a programming language to communicate with machine by writing

instructions. Instruction can be written in Machine language or assembly language or High level

language.

Naturally a language is the source of communication between two persons, and also
between person to machine like computer. The languages we can use to
communicate with the computer are known as Computer programming languages.

Generally there are three major types of languages are available and as follows:

1. Machine languages
• Strings of numbers giving machine specific instructions
• Example:

 +1300042774
 +1400593419
 +1200274027

2. Assembly languages
• English-like abbreviations representing elementary computer

operations (translated via assemblers)
• Example:

 Load BASic
 Add Basic,da,gross
 Move gross,total

3. High level languages

 The set of commands available in high level language is very simple and

 easy to understand.

• Code is similar to everyday use of English sentence

• Use mathematical notations (translated via compilers)

• Example:

 Totalsal = basic + da

“High-level” is a relative term, C programming language is a relatively low-level and also

high-level language. Pascal, Fortran, COBOL, Java etc are typical examples for high-level

languages. Application specific languages are Matlab, Javascript, VBScript etc.

 What is Programming ?

 A programming is a tool for developing executable models for a class of problem

domains.

 A programming language is a notational system for describing computation in a

machine-readable and human-readable form.

 A vocabulary and set of grammatical rules for instructing a computer to perform

specific tasks. It usually refers to high-level languages, such as BASIC, C, C++, etc…

• Computers are based on the stored program concept given by Von Neumann. It consists of

Central Processing Unit(CPU) main memory, input output devices, ports, buses etc.,

• Actions performed by CPU are written through program. Hence Program is a sequence of

instructions.

Tools such as flowcharts, Algorithm and pseudocodes are used to develop program

 Pseudocodes:

Since each programming language uses a unique syntax structure, understanding the code

of multiple languages can be difficult. Pseudocode helps this problem by using

conventional syntax and basic English phrases that are universally understood

Pseudocode is an informal program description that does not contain code syntax or

underlying technology considerations. It summarizes a program’s steps (or flow) but

excludes underlying details. Hence, By describing a program in pseudocode, programmers

of all types of languages can understand the function of a program.

Example

 If student's marks is greater than or equal to 35

 Print "pass"

 else

 Print "fail “

• Algorithm:

It is an effective step-by-step procedure to perform the solution to a given problem.

It can be expressed using notations. Natural language like English is used to write these

steps.

• Flowcharts:

• It is a diagram showing a sequence of activities to be performed for the solution of a

problem.

• A set of conventional symbols are used to draw flowcharts

• Graphically depicts the logical steps to carry out a task and shows how the steps relate to

each other.

• An organized combination of shapes, lines, and text that graphically illustrates a process or

structure

• Flowchart is a pictorial representation showing all the steps of a process

Some of the symbols used do design flowcharts are

Example to demonstrate some of the flowcharts are

1.

2.

Psedocode to calculate class average grade

: Determine the average grade of a class

 Initialize Counter and Sum to 0

 Do While there are more data

 Get the next Grade

 Add the Grade to the Sum

 Increment the Counter

 Loop

 Compute Average = Sum / Counter

 Display Average

Flowchart representation

 History of C Programming Language

 The C programming language was designed by

 Dennis Ritchie at Bell Laboratories in the early 1970s

 Influenced by following previous High level languages

• ALGOL 60 (1960),

• CPL (Cambridge, 1963),

• BCPL (Martin Richard, 1967), (Basic Combined Programming Language)

• B (Ken Thompson, 1970)

B language is modified by Ritchie and new Language is named as C

 C is a general-purpose language which has been closely associated with the UNIX OS for

 which it was developed - since the system and most of the programs are written in C.

C Standards

 Standardized in 1989 by ANSI (American National Standards Institute)

known as ANSI C

 International standard (ISO) in 1990 which was adopted by ANSI and is

known as C89

 As part of the normal evolution process the standard was updated in

1995 (C95) and 1999 (C99)

Characteristics of C Programming languages:

 Direct access to memory layout through pointer manipulation

 Concise syntax, small set of keywords

 Block structured language

 Some encapsulation of code, via functions

 Type checking (pretty weak)

 C is portable(program written for one computer can be run on

another computer with little modification)

 C has an ability to extend itself.

 C was invented to write operating system called UNIX

 The language was formalized by American National Standard Institute

(ANSI) 1988

 Unix is written using C

 C is widely used to develop system softwares

 C is a case sensitive program

Compilation Model:

Compilation process in UNIX/LINUX environment:

 To compile and link a C program that is contained entirely in one source file:

 cc program.c

 The executable program is called a.out by default.

 If you don’t like this name, choose another using the –o option:

 cc program.c –o exciting_executable

Compilation process in Turbo C environment:

To type c Program: click File -> open -> noname.cpp is created (cpp stands for c plus plus)

Type the program in the editor

Run the Program by pressing (Ctrl+F9)

Output of the program will be displayed as shown below:

General structure of C program

Pre-processor directives(#include..)

 int main()

 {

 Declaration statements;

 executable statements;

 return 0;

 }

Example Programs:

1.

#include <stdio.h>

// program prints hello C world

Int main() {

 printf ("Hello C world!");

 return 0;

}

Output: Hello C world!

Header files:

• The files that are specified in the include section is called as header file

• These are precompiled files that has some functions defined in them

• We can call those functions in our program by supplying parameters

• Header file is given an extension .h

• C Source file is given an extension .c

Example : # include <stdio.h>

main ()

• This is the entry point of a program

• When a file is executed, the start point is the main function

• From main function the flow goes as per the programmers instructions.

• There may or may not be other functions written by user in a program

• Main function is compulsory for any c program

Comment lines in C Program:

• Single line comment (line starts with two slashes //)

– // (double slash)

– Termination of comment is by pressing enter key

• Multi line comment (starts with / * and end with */)

 /*….

…….*/

 This can span over to multiple lines

Output Statement printf()

printf() statement is used to output the expression values and messages on

to the output screen. General structure of printf() is

 printf(“ message placeholder”, variables);

 printf(“ value of c = %d”,c);

• printf() is a library function declared in <stdio.h>
• Syntax: printf(FormatString, Expr, Expr...)

– FormatString: String of text to print
– Exprs: Values to print
– FormatString has placeholders to show where to put the values (note: #placeholders

should match #Exprs)
– Placeholders: %s (print as string), %c (print as char),

 %d (print as integer),
 %f (print as floating-point)

– \n indicates a newline character
 Example: printf("Original input : %s\n", input);

Example program:

#include <stdio.h>
// program prints a number of type int
int main() {
 int number = 10;
 printf (“The Number is %d”, number);
 return 0;
}

 Output: The Number is 10

 Input statement scanf()

 scanf (); //used to take input from console(user).

 scanf(“%d”, &a);

 Remember to use & symbol along with integer/floating variable.

Does not use at the time of reading character/string type data.

Some of the format specifier

 %c for The character.

 %d for The integer format specifier.

 %f for The floating-point format specifier.

 %s for The string format specifier.

Example:

• Input

 scanf(“%d”,&a);
Gets an integer value from the user and stores it under the name “a”

• Output
 printf(“%d”,a);
 Prints the value present in variable a on the screen

Variables:

Variables are data that will keep on changing

Declaration

 <<Data type>> <<variable name>>;

 int a;

Initialization

 <<varname>>=<<value>>;

 a=10;

Usage (updation)

 <<varname>>

 a=a+1; //increments the value of a by 1

Rules to declare a variable:

• Should not be a reserved words like int, float, sin etc..

• Should start with a letter or an underscore(_)

• Can contain letters, numbers or underscore.

– Choose a name that reflects the role of the variable in a program, e.g.

• Good: customer_name, ss_number;

• Bad : cn, ss;

• No other special characters are allowed including space

• Variable names are case sensitive

– say variable A (Big letter) and a (small letter) are different

 Some properties of a variable:

• Represent storage units in a program

• Used to store/retrieve data over life of program

• Type of variable determines what can be placed in the storage unit

• Assignment – process of placing a particular value in a variable

• Variables must be declared before they are assigned

• The value of a variable can change; A constant always has the same value

Tokens:

• Token is a sequence of one or more characters that is significant as a group

• Six types of tokens are: keywords, identifiers(variables),constants, string literals,

operators and other separators

 keywords- reserved words for example sqrt,pow,sin,int

 identifiers- names given to variables example: a,sum

Constants: integer, floating and character example: 10,10.0

Operators: arithmetic, relational, logical example: < ,==, !=,&&,||

Separators: white spaces, comments example: //...

Data type size and its range

• Primary : int, float, char
– int (signed/unsigned)(2,4Bytes): used to store integers.
– char (signed/unsigned)(1Byte): used to store characters
– float, double(4,8Bytes): used to store a decimal number.

• User Defined:
– typedef: used to rename a data type

• typedef int integer; can use integer to declare an int.
– enum, struct, union

TYPE OF

DATA

DATA TYPE SIZE (IN BYTES)

16 BIT COMPUTER

RANGE

Character char 1 Signed -128 to 127

Unsigned: 0 to 255

integer int 2 Signed: -32768 to 32767

Unsigned: 0 to 65535

Real number float 4

Double

precision

double 8

Constants

• Constant is a quantity whose value cannot be changed during program execution.

• C supports four type of constants

 integer, floating, character and enumeration constants

Integer Constant

• Represents a signed integer of typically 2 or 4 or 8 bytes (16 or 32 or 64 bits)

• Precise size is machine-dependent

• It is a number that has an integer value.

• It can be specified in decimal, octal or hexadecimal form

 example: 5, 125,

Floating Constant

• Floating constant have matissa and exponent part(optional includes the letter e or E)

 ddd.dddE(+/-)dd

• Mantissa(significant part) contains digit followed by decimal point(.)and then digit

 453.678

Character Constant

• It is grouped into two categories: integer character, wide character

 integer character is a sequence of one or more character enclosed in single quotes

‘ a’

• The character within the single quote may be any character (except backslash or

newline or single quote)

 example : ‘d’ ‘f’

Some points to be remembered about C Programs are

• all statements end with a semicolon!

• Commas separate multiple declarations

• Blank lines have no effect

• Extra spaces between tokens has no effect.

• Comments are ignored by the compiler

Invisible Characters in C language

• Some special characters are not visible directly in the output stream. These all begin

with an escape character (i.e. \);

– \n newline

– \t horizontal tab

– \a alert bell

– \v vertical tab

Operators in C Programming languages

Some of the operators used in c language are

 Arithmetic operators

 Conditional operators

 Bitwise operators

 Relational operators

 Logical operators

 Assignment operators

 Increment and decrement operators

 Special operators

1. Arithmetic Operator: arithmetic operations are performed

on integer or floating point data i.e.

Integer Arithmetic

Operands in a single arithmetic expression
Operation is integer arithmetic

E.g. If a =10 and b=4
 a-b=6
 a+b=14
 a/b=2
 a%b=2

Real Arithmetic :

Real operator is known as real arithmetic.
Decimal and exponential notation

If x,y are floats

x=6.0/7.0=0.857143
y=-2.0/3.0=-0.666667

Mixed –mode Arithmetic

 One of the operands is real and the other is integer

For example

 19/10.0=1.9

 Assignment Operator:

 In addition, C has a set of shorthand assignment operators of the form.

 var oper = exp;

 Example

 x = a + b

Simple Programs

1. Write a program to calculate area of triangle

#include<stdio.h>

int main()

{ int len,bre,area;

 printf(“ enter length and breadth of triangle”);

 scanf(“%d%d”,&len,&bre);

 area=0.5*len*bre;

 printf(“\narea of triangle=%d”,area);

 return 0;

}

OUT PUT

enter length and breadth of triangle

4

5

area of triangle=10

2. Write a program to calculate area of circle

#include<stdio.h>

#define pi 3.14

int main()

{

 int r;

 float area;

 printf(“ enter radius of the circle\n”);

 scanf(“%d”,&r);

 area= pi * r * r;

 printf(“\narea of circle = %f”, area);

 return 0;

}

3. Write a program to calculate area and perimeter of a circle

#include<stdio.h>

#define pi 3.14

int main()

{

 int r;

 float area,peri;

 printf(“ enter radius of the circle);

 scanf(“%d”,&r);

 area= pi * r * r;

 peri = 2*pi*r;

 printf(“ area of circle = %f\n”, area);

 printf(“ perimeter of a circle=%f”,peri);

 return 0;

}

4. Write a program to calculate simple interest

#include<stdio.h>

int main()

{ int p;

 float r,t,interest,total;

 printf(“ enter principal amount “);

 scanf(“%d”,&p);

 printf(“ enter rate of interest and time period”);

 scanf(“%f%f”,&r,&t);

 interest=(p*r*t)/100.0;

 total=p+interest;

 printf(“interest amount=%f\n total amount=%f”,interest,total);

 return 0;

}

Mathematical Library functions:

 In order to calculate mathematical values of sin(), cos(),exp() etc. C language provides built-in

library functions.

• Library facilities are usually provided in the languages to keep the language simple and to do

many mathematical calculations.

• Some of the library header files available in C are

 input/output facility <stdio.h> (scanf,printf,gets,puts….)

 mathematical operations <math.h>(sqrt,sin,cos,log,pow…)

 string manipulation oper <string.h>(strcpy,strcat,strlen..)

 console input/output <conio.h> (getch,…)

• These header should be included in the program using

 #include preprocessor directive statement

 ex: #include<math.h>

• This header file gives many built in mathematical library functions such as trigonometric,

logarithmic, exponential etc..

Function Name C function call meaning

sqrt sqrt(x) Square root of x

power pow(x,y) X rise to Y

exponential exp(x)

log10 log10(x)

log log(x) Natural logarithm of x

sin sin(x) Sine of (x)

cos cos(x) Cosine of (x)

tan tan(x) Tangent of (x)

absolute abs() |a|

1. Program to calculate area of triangle when sides of triangle is given

#include<stdio.h>
int main()
{ int a,b,c;
 float area,s;
 printf(“ enter three sides length of a triangle”);
 scanf(“%d%d%d”,&a,&b,&c);
 s=(a+b+c)/2.0
 area=sqrt(s * (s-a)* (s-b) * (s-c));
 printf(“ area of triangle=%f”,area);
 return 0;
}

Relational Operator: In order to find the relation between any two values relational operator are
used for example a is greater than b, result may be true or false depends on the value of a and
b, some of the relational operators are:

Control Statements :

 The order in which the statements are executed are called control flow

 The statements that are used to control the flow of execution of program are
called control statements

 C Language supports following control statements

If Statement:

 Branching is the process of choosing the right branch for execution, depending on the
result of “conditional statement”.

1. Write a Program to find biggest among two numbers

#include <stdio.h>
int main()
{
 int a, b;
 printf(“ enter two numbers:”);
 scanf(“%d%d”,&a,&b);
 if (a>b) printf(“ a is the biggest number”);
 if (b>a) printf(“ b is the biggest number”);
 if (a==b) printf (“ a and b are equal”);
 return 0;
}

2. If –else statement:

Unlike “if statement” where you could only specify code for when condition is true; for “if
else statement” you can also specify code for when the condition is not True (false)

Program to find biggest among two numbers using (if-else)

#include <stdio.h>

int main()

{ int a, b;

 printf(“ enter two numbers:”);

 scanf(“%d%d”,&a,&b);

 if (a>b) printf(“ a is the biggest number”);

 else printf(“ b is the biggest number”);

 return 0;

}

3. Nested- if statement:

 Using “if…else statement” within another “if…else statement” is called ‘nested if

statement’.

 “Nested if statements” is mainly used to test multiple conditions
 The if-else constructs can be nested (placed one within another) to any depth.

 General forms: if-if-else and if-else-if.

The if-if-else constructs has the following form (3 level of depth example

Program to find biggest among two numbers using nested-if statement:

#include <stdio.h>

int main()

{ int a, b;

 printf(“ enter two numbers:”);

 scanf(“%d%d”,&a,&b);

 if (a>b) printf(“ a is the biggest number”);

 else if (b>a) printf(“ b is the biggest number”);

 else printf(“ a and b are equal”);

 return 0;

}

4. Logical Operator

 Inputs and or

 a b a & b a | b

 0 0 0 0

 0 1 0 1

 1 0 0 1

 1 1 1 1

1. Program to find quadrant for the given co-ordinates

#include<stdio.h>

int main();

{

 int x,y;

 printf(“Enter the coordinates for quadrants:”);

 scanf(“%d%d”,&x,&y);

 if(x>0 && y>0) printf(“the co-ordinate lies on 1st quadrant”);

 else if(x<0 && y>0) printf(“the co-ordinate lies in 2nd quadrant”);

 else if(x<0 && y<0) printf(“the co-ordinate lies in 3rd quadrant”);

 else ïf(x>0 && y<0) printf(“the co-ordinate lies in 4th quadrant”);

 else if(x==0 && y==0) printf(“the co-ordinate is on origin”);

 else if(x==0) printf(“the co-ordinate lies in y-axis”);

 else printf(“the co-ordinate lies in x-axis”);

 }

 Input
co-ordinates

 OUT PUT

25,78 the co-ordinate lies on 1st quadrant

-105,40 the co-ordinate lies on 2nd quadrant

-105,-150 the co-ordinate lies on 3rd quadrant

85,-125 the co-ordinate lies on 4th quadrant

0,0 the co-ordinate lies in origin

0,25 the co-ordinate lies in y-axis

30,0 the co-ordinate lies in x-axis

2. Program to declare student result

int main()

{

 int s1,s2,s3;

 float avg;

 printf(“enter 3 subject marks”);

 scanf(“%d%d%d”,&s1,&s2,&s3);

 avg=(s1+s2+s3)/3.0;

 if ((s1<35)||(s2<35)||(s3<35)) printf(“ fail”);

 else if (avg>=70) printf(“ Distinction”);

 else if ((avg>=60) && (avg < 70)) printf(“ First class”);

 else if ((avg>=50) &&(avg < 60)) printf(“ Second class”);

 else printf (“ pass class”);

 return 0;

}

1. Program to calculate Roots of Quadratic equation (Lab program)

• Quadratic equation of the form ax^2+bx+c=0 is having two roots. Root is a value of x when it

is substituted to the above equation it satisfies(i.e. LHS=RHS (F(X)=y=0))

• Root is a point on the x-axis where y=0. In quadratic equation it cuts x-axis at two points. (i.e.

two roots)

• Root value depends on the discriminant value(b^2-4ac)

• If discriminant is zero -- roots are equal (i.e. r1=r2)

• If discriminant is greater than zero – roots are distinct

• If discriminant is less than zero – roots are imaginary

#include<stdio.h>
#include<math.h>
int main()
{ float a,b,c;
 float d,r1,r2,re,ri;
 printf(“enter the co-efficients”);
 scanf(“%f%f%f”,&a,&b,&c);
 d=b*b-4*a*c;
 if (d==0){
 r1=-b/(2*a);
 printf(“roots are real and equal”)
 printf(“root1=%f\t root2=%f”,r1,r1);
 }
else if (d>0){
 r1=-b+sqrt(d)/(2*a);
 r2=-b-sqrt(d)/(2*a);
 printf(“roots are distinct\n”);
 printf(“root1=%f\t root2=%f”,r1,r2);
 }
else {
 re=-b/(2*a);
 ri=sqrt(abs(d))/(2*a);
printf(“roots are complex conjugates\n”);
printf(“real part=%f\t img part=%f”,re,ri);
 }
return 0;
}

2. Program to check whether the given year is Leap year or not (Lab Program)

A year is leap if it is divisible by 4 but not by 100 or is divisible by 400

 ex: 1996,2000,2004 -- leap year

 1900,2002,2100 -- not a leap year

 Algorithm leap(year)

 read(year)

 if(year is divisible by 4 and year is not divisible by 100) or is divisible by 400

 print “ given year is leap year”

 else

 print “ given year is not a leap year”

End of the algorithm

 (((year%4==0) &&(year%100 != 0)) || year%400 == 0)

• #include<stdio.h>

 int main()

 {

 int year;

 printf(“enter the year”);

 scanf(“%d”,&year);

 if(((year%4==0) &&(year%100 != 0)) || year%400 == 0)

 printf(“given year %d is leap year”,year);

 else printf (“given year %d is not a leap year”,year);

 return 0;

 }

Arithmetic Operators:

• Prefix Increment : ++a
– example:

» int a=5;
» b=++a; // value of b=6; a=6;
» Postfix Increment: a++

– example

» int a=5;
» b=a++; //value of b=5; a=6;

• Modulus (remainder): %
– example:

» 12%5 = 2;
» Assignment by addition: +=

– example:
» int a=4;
» a+=1; //(means a=a+1) value of a becomes 5

We Can use -, /, *, % also
• Comparison Operators: <, > , <=, >= , !=, ==, !,

&&, || .
– example:

» int a=4, b=5;
» a<b returns a true(non zero number) value.
» Bitwise Operators: <<, >>, ~, &, | ,^ .

– example
» int a=8;
» a= a>>1; // value of a becomes 4

• Meaning of a + b * c ?
 is it a+(b*c) or (a+b)*c ?

• All operators have precedence over each other
• *, / have more precedence over +, - .

– If both *, / are used, associativity comes into picture. (more on
this later)

– example :
» 5+4*3 = 5+12= 17.

• Precedence rules decides the order in which different operator are

applied.

• Associativity rule decides the order in which multiple occurrences of
the same level operator are applied

•
Precedence Table:
Highest on top

++ -- (Postfix)

++ -- (Prefix)

* / %

 + -

 << >>

 < >

 &

 |

 &&

 ||

Switch Statement: Switch statement begins with switch keyword. It is the

combination of multiple cases separated by break statement. Only one case will
be executed at any time and break statement takes the control outside the switch
statement. If there is no match for the case statement default statement will be
executed.

1. Program to Simulate simple calculator

#include<stdio.h>

int main()

{

 float a,b,c;

 char op;

printf(“Enter the expression in the form of a op b: “);

Scanf(“%f %c %f”,&a,op,&b);

switch(op)

{

 case ‘+’ : c=a+b;

 break;

 case ‘-’ : c=a-b;

 break;

 case ‘*’ :

 case ‘x’ :

 case ‘X’ : c=a*b;

 break;

 case ‘/’ : c=a/b;

 break;

 }

 printf(“c=%f\n”,c);

 return 0;

 }

2. Program to calculate area of geometric objects as per user request

#include<stdio.h>

int main()

{

 float a,b,area;

 int choice;

printf(“Enter the choice(1:square,2:rectangle:3:circle “));

scanf(“%d”,&choice);

switch(choice)

{

 case 1 : printf(“enter side length”);

 scanf(“%f”,&a);

 area=a*a;

 break;

 case 2 : printf(“enter length and

 breadth”);

 scanf(“%f%f”,&a,&b);

 area=a*b;

 case 3 : printf(“enter the radius”)

 scanf(“%f”,&a)

 area=3.14*a*a;

 break;

 default: printf(ïn valid choice”);

 break;

 }

 printf(“ area=%f\n”,area);

 return 0;

 }

While LOOP : It executes the statement with in the loop until the

condition is satisfied.

 Executes a block of statements as long as a specified condition is TRUE.

 The general while loop construct,

 while (condition)

 statement(s);

 next_statement;

 The (condition) may be any valid C expression.

 The statement(s) may be either a single or a compound (a block of code) C statement.

 When while statement encountered, the following events occur:

1. The (condition) is evaluated.

2. If (condition) evaluates to FALSE (zero), the while loop terminates and execution passes to the next_statement.

3. If (condition) evaluates as TRUE (non zero), the C statement(s) is executed.

4. Then, the execution returns to step number 1 until condition becomes FALSE.

simple while loop example

#include <stdio.h>

int main(void)

{

 int n = 1;

 // set the while condition

 while(n <= 12)

 {

 // print

 printf("%d ", n);

 // increment by 1, repeats

 n++;

 }

 // a newline

 printf("\n");

 return 0;

}

Output:

// simple while loop example

#include <stdio.h>

int main(void)

{

 int n = 1,sum=0;

 // set the while condition

 while(n <= 50)

 {

 sum=sum+n;

 // increment n by 1, repeats

 n++;

 }

 // a newline

 printf(“sum upto 1 to 50 is =%d“,sum);

 return 0;

}

while – loop example

To sum= 2^2+4^2+….. +50^2

simple while loop example

#include <stdio.h>

int main(void)

{

 int n = 2;

 float sum=0.0;

 // set the while condition

 while(n <= 50)

 {

 sum=sum+pow(n,2);

 // increment n by 1, repeats

 n=n+2;

 }

 printf(“sum upto 2^2 to 50^2 is =%d“,sum);

 return 0;

3. GCD using Euclidian’s algorithm

• Let m and n represent two numbers and variable r represent remainder of the division

 r=m%n

 Algoritm GCD(m,n)

 read (m,n)

 while(n>o)

 { r= m % n;

 m = n;

 n= r;

 }

 print(“gcd of m and n is”, m)

#include<stdio.h>

int main()

{

 int m,n,r;

 printf(“enter two integer number”);

 scanf(“%d%d”,&m,&n);

 while(n > 0)

 { r=m%n;

 m=n;

 n=r;

 }

 printf(“GCD of m and n is :%d”, m);

 return 0;

}

step m n m%n

 1 50 35 15

 2 35 15 5

3 15 5 0

4 5 0(s)

Do-While Loop: This statement is used when we want to execute

the body of the loop at least once.

do

statement(s);

while (condition)

next_statement;

 Executes a block of statements as long as a specified condition is true at least once.

 Test the condition at the end of the loop rather than at the beginning, as

demonstrated by the for and while loops.

 (condition) can be any valid C expression.

 When the program encounter the do-while loop, the following events occur:

 The statement(s) are executed.

 The (condition) is evaluated. If it is TRUE, execution returns to step number

1. If it is FALSE, the loop terminates and the next_statement is executed.

 This means the statement(s) in the do-while will be executed at least once.

#include <stdio.h>

main()

{

 int i = 10;

 do{

 printf("Hello %d\n", i);

 i = i -1;

 }while (i > 0);

}

Output:
Hello 10

Hello 9

Hello 8

Hello 7

Hello 6

Hello 5

Hello 4

Hello 3

Hello 2

Hello 1

1. Program to check the given number is palindrome or not

#include<stdio.h>
int main()
{
 int num,rev=0,temp;
 printf("Enter a number: ");
 scanf("%d",&num);
 temp=num;
 while(num!=0){
 digit=num%10;
 num=num/10;
 rev=rev*10+digit;
 }
if(rev==temp)
 printf("%d is palindrome",temp);
else
 printf("%d is not a palindrome",temp);

return 0;

num digit rev

3467 0

3467 7 7

346 6 76

34 4 764

3 3 7643

0

1. Check the given number is Armstrong number or not using C
program

#include<stdio.h>
int main()
{
 int num,r,sum=0,temp;
 printf("Enter a number: ");
 scanf("%d",&num);
 temp=num;
 while(num!=0){
 r=num%10;
 num=num/10;
 sum=sum+(r*r*r);
 }
 if(sum==temp)
 printf("%d is an Armstrong number",temp);
 else
 printf("%d is not an Armstrong number",temp);
 return 0;
}

For statement:

• for loop is used for repetitive execution of a statement or group of statements.

 for(initial_expr; final_expr; update_expr)

 {

 statements;

 }

 example:

 for(i=1; i<=10; i++)

 {

 sum= sum+i;

 }

• Initial_expr is usually an assignment expression.

• Update_expr is an increment/decrement expression

• Final_expr is the relational expression results in T or F

Print the numbers in the given range say m to n

 scanf(“%d%d”,&m,&n);

 for (i=m;i<=n;i++)

 printf(“%d \t”,i);

• for(x=0.1;x<=1.0;x+=0.2)

 printf(“%f\t %f\n”,x,x*x);

0.1 0.01

0.3 0.09

0.5 0.25

0.7 0.49

0.9 0.81

1. Program to find factorial of a given number

Algorithm fact

 read n

 fact=1

 for i=n down to 2

 fact= fact*I

 print (fact)

 end

 for loop is a very flexible construct.

 Can use the decrementing counter instead of incrementing. For example,

for (nCount = 100; nCount > 0; nCount--)

 Can use counter other than 1, for example 3,

for(nCount = 0; nCount < 1000; nCount += 3)

 initial_value can be omitted if the test variable has been initialized beforehand.

 However the semicolon must still be there. For example,

nCount=1;

for(; nCount < 1000; nCount ++)

 The for statement(s) can be followed by a null (empty) statement, so that task is done in the

for loop itself.

Null statement consists of a semicolon alone on a line. For example

for(count = 0; count < 20000; count++)

;

 This statement provides a pause (delay) of 20,000 milliseconds.

for loop – Example

sum=0+1+2+……….+20

nsum = 0;

for(irow = 1; irow <=20; irow++)

 nsum = nsum + irow;

printf("\n Sum of the first 20 natural numbers = %d“,nsum);

The above program segment will compute and display the sum of the first 20 natural numbers

Nested for loop

• Example:

• for(i=1;i<=2,i++)

• { for(j=1; j<=3;j++)

• c=i*j;

• }

 for i=1 j varies from 1 to 3

 for i=2 j varies from 1 to 3

• Write a program to print the below structure using “*”

*

* *

* * *

* * * *

#include <stdio.h>

#include <conio.h>

void main()

{

 int I,j;

 for(i=1; i<=4;i++)

 { for (j=1; j<=i; j++)

 {

 printf(“*\t”);

 }

 printf(“\n”);

 }

 getch();

}

• Write a program to print the below structure using “*”

* * * *

* * *

* *

*

#include <stdio.h>

#include <conio.h>

void main()

{

 int I,j;

 for(i=4; i>=1;--i)

 { for (j=1; j<=i; ++j)

 {

 printf(“*\t”);

 }

 printf(“\n”);

 }

 getch();

}

Continue statement:

 continue keyword forces the next iteration to take place immediately,

skipping any instructions that may follow it.

 The continue statement can only be used inside a loop (for, do-while

and while) and not inside a switch-case selection.

 When executed, it transfers control to the condition (the expression

part) in a while or do-while loop, and to the increment expression in a

for loop.

Unlike the break statement, continue does not force the termination of

a loop, it merely transfers control to the next iteration.

// using the continue in for structure

#include <stdio.h>

int main(void)

{

 int inum;

 for(inum = 1; inum <= 10; inum++)

 {

 // skip remaining code in loop only if iNum == 5

 if(inum == 5)

 continue;

 printf("%d ", iNum);

 }

 printf("\nUsed continue to skip printing the value 5\n");

 return 0;

Goto Statement:

 The goto statement is one of C unconditional jump or branching.

 When program execution encounters a goto statement, execution

immediately jumps, or branches, to the location specified by the goto

statement.

 The statement is unconditional because execution always branches

when a goto statement is came across, the branching does not depend

on any condition.

 A goto statement and its target label must be located in the same

function, although they can be in different blocks.

 Use goto to transfer execution both into and out of loop.

 However, using goto statement strongly not recommended.

 Always use other C branching statements.

 When program execution branches with a goto statement, no record is

kept of where the execution is coming from.

Example:

#include <stdio.h>

int main () {

 /* local variable definition */

 int a = 10;

 /* do loop execution */

 LOOP:do {

 if(a == 15) {

 /* skip the iteration */

 a = a + 1;

 goto LOOP;

 }

 printf("value of a: %d\n", a);

 a++;

 }while(a < 20);

 return 0;

}

Output:

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 16

value of a: 17

value of a: 18

value of a: 19

1. Program to check the given number is prime or Not

#include<stdio.h>

#include<conio.h>

void main()

{ int n,I,r;

 scanf(“%d”,&n)

 for (i=2; i<=n/2;i++)

 { r= n % i ;

 if (r== 0) {

 printf (“given number is not prime”);

 getch();

 exit(0);

 }

}

 printf(“ given number is prime”);

 getch();

 return 0;

Remarks: if we check the number up to half of the given number whether it is divisible or

not is enough.

• Conditional operator: (? : Operator)

The conditional operator consists of 2 symbols the question

mark (?) and the colon (:)

 Syntax:

 exp1 ? exp2: exp3

example:
a=16

b=25;

 x=(a>b) ? a : b;

working of above expression can be analyzed as follows:

if (a>b)

 x=a;

 else

 x=b;

• The ? : operator is just like an if ... else statement except that because it is an operator you

can use it within expressions.

• ? : is a ternary operator in that it takes three values, this is the only ternary operator C has.

• ? : takes the following form:

 if condition is true ? then X return value : otherwise Y value;

#include <stdio.h>

main()

{

 int a , b;

 a = 10;

 printf("Value of b is %d\n", (a == 1) ? 20: 30);

 printf("Value of b is %d\n", (a == 10) ? 20: 30);

}

Output:

Value of b is 30

Value of b is 20

Break statement:

The break statement in C programming has the following two usages −

• When a break statement is encountered inside a loop, the loop is immediately terminated

and the program control resumes at the next statement following the loop.

• It can be used to terminate a case in the switch statement.

If you are using nested loops, the break statement will stop the execution of the innermost

loop and start executing the next line of code after the block.

#include <stdio.h>

int main () {

 int a = 10;

 while(a < 20)

 {

 printf("value of a: %d\n", a);

 a++;

 if(a > 15) {

 /* terminate the loop using break statement */

 break;

 }

 }

 return 0;

}

Output:

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

2. Bitwise operator

• It takes the operand as string of bits

• Bit operations are carried out on the data

 & bitwise AND operator

 | bitwise OR operator

 ~ NOT operator

<< left shift operator

>> right shift operator

• X=4

 x= x<<3

 64 32 16 8 4 2 1

 0 0 0 0 1 0 0

First

shift

0 0 0 1 0 0 0

Second

shift

0 0 1 0 0 0 0

Third

shift

0 1 0 0 0 0 0

Answer x= 32

• X=96

 x= x>>3

 64 32 16 8 4 2 1

98 1 1 0 0 0 0 0

First

shift(48)

0 1 1 0 0 0 0

Second

shift(24)

0 0 1 1 0 0 0

Third

shift

(12)

0 0 0 1 1 0 0

Answer x= 12

Type Casting:

• Process of converting an expression of a given type to another type

 example: int to float

 float to int

• When two operands in an expression are different, user explicitly changes the data type, this

is known type conversion

3. Special operator

Comma operator: combines multiple expressions into single expression. The value of

right most expression is assigned to left expression

 x=(a=4,b=5,c=2,c+a*b);

 x=22

4. Size of operator : sizeof()

 used to determine size of the operand based on its data type

 float r= 12.45;

 int y;

 y=sizeof(r);

 value of y is 4 because size of float is 4 bytes.

Formatted output statement:
a= 14

 printf(“%d”, a) → 14

 printf(“%4d”,a) → bb14

 printf(“%4.3d”,a) → b014

 printf(“%-4d”,a) → 14bb

 printf(“%-4.3d”,a) → 014b

 Note:

 b -> stands for blank

float a= 10.437

printf(“%f”,a) → 10.437000(it provides 6 digit

 after decimal point)

printf(“%w.df”,a)

 w-> number of columns for integer part

 d-> number of digits to be limited after

 the decimal point

Printf(“%4.2f”,a) -> 10.44

Comparison of getchar(),getche(),getch() functions

• getchar() -> used to read single character at run time. Given value is displayed on the screen

and the compiler wait for another character to be typed.

• getche()-> it is used to get a character from console and echoes to the screen. The given

value is displayed on the screen and the compiler does not wait for another character to be

typed

• getch() -> is used to get a character from console but does not echo to the screen.

Exercises:

• What is a variable and constant? List the rules to be followed while declaring a variable.

• What are data types? List the data types available in C programming language

• List and explain with appropriate example the various operators used in c language.

• Compare while loop with do-while loop of C programming language.

• Write a program to exchange (swap) two numbers.

• Write a program to check the given number is prime or not

• Write a program to generate fabinocci series

 1 1 2 3 5 8 13 ……..

