MTech Computer Systems Performance Analysis syllabus for 1 Sem 2018 scheme 18SCE151

Module-1 Module 1 10 hours

Introduction: The art of Performance Evaluation; Common Mistakes in Performance Evaluation, A Systematic Approach to Performance Evaluation, Selecting an Evaluation Technique, Selecting Performance Metrics, Commonly used Performance Metrics, Utility Classification of Performance Metrics, Setting Performance Requirements.

Module-2 Module 2 10 hours

Workloads, Workload Selection and Characterization: Types of Workloads, addition instructions, Instruction mixes, Kernels; Synthetic programs, Application benchmarks, popular benchmarks. Work load Selection: Services exercised, level of detail; Representativeness; Timeliness, Other considerations in workload selection. Work load characterization Techniques: Terminology; Averaging, Specifying dispersion, Single Parameter Histograms, Multi Parameter Histograms, Principle Component Analysis, Markov Models, Clustering.

A d v e r t i s e m e n t
Module-3 Module 3 10 hours

Monitors, Program Execution Monitors and Accounting Logs: Monitors: Terminology and classification; Software and hardware monitors, Software versus hardware monitors, Firmware and hybrid monitors, Distributed System Monitors, Program Execution Monitors and Accounting Logs, Program Execution Monitors, Techniques for Improving Program Performance, Accounting Logs, Analysis and Interpretation of Accounting log data, Using accounting logs to answer commonly asked questions.

Module-4 Module 4 10 hours

Capacity Planning and Benchmarking: Steps in capacity planning and management; Problems in Capacity Planning; Common Mistakes in Benchmarking; Benchmarking Games; Load Drivers; Remote- Terminal Emulation; Components of an RTE; Limitations of RTEs. Experimental Design and Analysis: Introduction: Terminology, Common mistakes in experiments, Types of experimental designs, 2k Factorial Designs, Concepts, Computation of effects, Sign table method for computing effects; Allocation of variance; General 2k Factorial Designs, General full factorial designs with k factors: Model, Analysis of a General Design, Informal Methods.

Module-5 Module 5 10 hours

Queuing Models: Introduction: Queuing Notation; Rules for all Queues; Little’s Law, Types of Stochastic Process. Analysis of Single Queue: Birth-Death Processes; M/M/1 Queue; M/M/m Queue; M/M/m/B Queue with finite buffers; Results for other M/M/1 Queuing Systems. Queuing Networks: Open and Closed Queuing Networks; Product form networks, queuing Network models of Computer Systems. Operational Laws: Utilization Law; Forced Flow Law; Little’s Law; General Response Time Law; Interactive Response Time Law; Bottleneck Analysis; Mean Value Analysis and Related Techniques; Analysis of Open Queuing Networks; Mean Value Analysis; Approximate MVA; Balanced Job Bounds; Convolution Algorithm, Distribution of Jobs in a System, Convolution Algorithm for Computing G(N), Computing Performance using G(N), Timesharing Systems, Hierarchical Decomposition of Large Queuing Networks: Load Dependent Service Centers, Hierarchical Decomposition, Limitations of Queuing Theory.